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706 Chapter 7 Linking

Linking is the process of collecting and combining various pieces of code and
data into a single file that can be loaded (copied) into memory and executed.

Linking can be performed at compile time, when the source code is translated
into machine code; at load time, when the program is loaded into memory and
executed by the loader; and even at run time, by application programs. On early
computer systems, linking was performed manually. On modern systems, linking
is performed automatically by programs called linkers.

Linkers play a crucial role in software development because they enable
separate compilation. Instead of organizing a large application as one monolithic
source file, we can decompose it into smaller, more manageable modules that can
be modified and compiled separately. When we change one of these modules, we
simply recompile it and relink the application, without having to recompile the
other files.

Linking is usually handled quietly by the linker and is not an important
issue for students who are building small programs in introductory programming
classes. So why bother learning about linking?

. Understanding linkers will help you build large programs. Programmers who
build large programs often encounter linker errors caused by missing modules,
missing libraries, or incompatible library versions. Unless you understand how
a linker resolves references, what a library is, and how a linker uses a library
to resolve references, these kinds of errors will be baffling and frustrating.

. Understanding linkers will help you avoid dangerous programming errors.The
decisions that Linux linkers make when they resolve symbol references can
silently affect the correctness of your programs. Programs that incorrectly
define multiple global variables can pass through the linker without any warn-
ings in the default case. The resulting programs can exhibit baffling run-time
behavior and are extremely difficult to debug. We will show you how this hap-
pens and how to avoid it.

. Understanding linking will help you understand how language scoping rules
are implemented.For example, what is the difference between global and local
variables? What does it really mean when you define a variable or function
with the static attribute?

. Understanding linking will help you understand other important systems con-
cepts. The executable object files produced by linkers play key roles in impor-
tant systems functions such as loading and running programs, virtual memory,
paging, and memory mapping.

. Understanding linking will enable you to exploit shared libraries. For many
years, linking was considered to be fairly straightforward and uninteresting.
However, with the increased importance of shared libraries and dynamic
linking in modern operating systems, linking is a sophisticated process that
provides the knowledgeable programmer with significant power. For exam-
ple, many software products use shared libraries to upgrade shrink-wrapped
binaries at run time. Also, many Web servers rely on dynamic linking of shared
libraries to serve dynamic content.
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(a) main.c
code/link/main.c

1 int sum(int *a, int n);

2

3 int array[2] = {1, 2};

4

5 int main()

6 {

7 int val = sum(array, 2);

8 return val;

9 }

code/link/main.c

(b) sum.c
code/link/sum.c

1 int sum(int *a, int n)

2 {

3 int i, s = 0;

4

5 for (i = 0; i < n; i++) {

6 s += a[i];

7 }

8 return s;

9 }

code/link/sum.c

Figure 7.1 Example program 1. The example program consists of two source files, main.c and sum.c. The
main function initializes an array of ints, and then calls the sum function to sum the array elements.

This chapter provides a thorough discussion of all aspects of linking, from
traditional static linking, to dynamic linking of shared libraries at load time,
to dynamic linking of shared libraries at run time. We will describe the basic
mechanisms using real examples, and we will identify situations in which linking
issues can affect the performance and correctness of your programs. To keep things
concrete and understandable, we will couch our discussion in the context of an x86-
64 system running Linux and using the standard ELF-64 (hereafter referred to as
ELF) object file format. However, it is important to realize that the basic concepts
of linking are universal, regardless of the operating system, the ISA, or the object
file format. Details may vary, but the concepts are the same.

7.1 Compiler Drivers

Consider the C program in Figure 7.1. It will serve as a simple running example
throughout this chapter that will allow us to make some important points about
how linkers work.

Most compilation systems provide a compiler driver that invokes the language
preprocessor, compiler, assembler, and linker, as needed on behalf of the user. For
example, to build the example program using the GNU compilation system, we
might invoke the gcc driver by typing the following command to the shell:

linux> gcc -Og -o prog main.c sum.c

Figure 7.2 summarizes the activities of the driver as it translates the example
program from an ASCII source file into an executable object file. (If you want
to see these steps for yourself, run gcc with the -v option.) The driver first runs
the C preprocessor (cpp),1 which translates the C source file main.c into an ASCII
intermediate file main.i:

1. In some versions of gcc, the preprocessor is integrated into the compiler driver.
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Figure 7.2
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Next, the driver runs the C compiler (cc1), which translates main.i into an ASCII
assembly-language file main.s:

cc1 /tmp/main.i -Og [other arguments] -o /tmp/main.s

Then, the driver runs the assembler (as), which translates main.s into a binary
relocatable object file main.o:

as [other arguments] -o /tmp/main.o /tmp/main.s

The driver goes through the same process to generate sum.o. Finally, it runs the
linker program ld, which combines main.o and sum.o, along with the necessary
system object files, to create the binary executable object file prog:

ld -o prog [system object files and args] /tmp/main.o /tmp/sum.o

To run the executable prog, we type its name on the Linux shell’s command
line:

linux> ./prog

The shell invokes a function in the operating system called the loader, which copies
the code and data in the executable file prog into memory, and then transfers
control to the beginning of the program.

7.2 Static Linking

Static linkers such as the Linux ld program take as input a collection of relocatable
object files and command-line arguments and generate as output a fully linked
executable object file that can be loaded and run. The input relocatable object
files consist of various code and data sections, where each section is a contiguous
sequence of bytes. Instructions are in one section, initialized global variables are
in another section, and uninitialized variables are in yet another section.



Section 7.3 Object Files 709

To build the executable, the linker must perform two main tasks:

Step 1. Symbol resolution. Object files define and reference symbols, where each
symbol corresponds to a function, a global variable, or a static variable
(i.e., any C variable declared with the static attribute). The purpose of
symbol resolution is to associate each symbol reference with exactly one
symbol definition.

Step 2. Relocation. Compilers and assemblers generate code and data sections
that start at address 0. The linker relocates these sections by associating a
memory location with each symbol definition, and then modifying all of
the references to those symbols so that they point to this memory location.
The linker blindly performs these relocations using detailed instructions,
generated by the assembler, called relocation entries.

The sections that follow describe these tasks in more detail. As you read, keep
in mind some basic facts about linkers: Object files are merely collections of blocks
of bytes. Some of these blocks contain program code, others contain program
data, and others contain data structures that guide the linker and loader. A linker
concatenates blocks together, decides on run-time locations for the concatenated
blocks, and modifies various locations within the code and data blocks. Linkers
have minimal understanding of the target machine. The compilers and assemblers
that generate the object files have already done most of the work.

7.3 Object Files

Object files come in three forms:

Relocatable object file. Contains binary code and data in a form that can be
combined with other relocatable object files at compile time to create an
executable object file.

Executable object file. Contains binary code and data in a form that can be
copied directly into memory and executed.

Shared object file. A special type of relocatable object file that can be loaded
into memory and linked dynamically, at either load time or run time.

Compilers and assemblers generate relocatable object files (including shared
object files). Linkers generate executable object files. Technically, an object module
is a sequence of bytes, and an object file is an object module stored on disk in a
file. However, we will use these terms interchangeably.

Object files are organized according to specific object file formats, which vary
from system to system. The first Unix systems from Bell Labs used the a.out
format. (To this day, executables are still referred to as a.out files.) Windows
uses the Portable Executable (PE) format. Mac OS-X uses the Mach-O format.
Modern x86-64 Linux and Unix systems use Executable and Linkable Format
(ELF). Although our discussion will focus on ELF, the basic concepts are similar,
regardless of the particular format.
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Figure 7.3
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7.4 Relocatable Object Files

Figure 7.3 shows the format of a typical ELF relocatable object file. The ELF
header begins with a 16-byte sequence that describes the word size and byte
ordering of the system that generated the file. The rest of the ELF header contains
information that allows a linker to parse and interpret the object file. This includes
the size of the ELF header, the object file type (e.g., relocatable, executable, or
shared), the machine type (e.g., x86-64), the file offset of the section header table,
and the size and number of entries in the section header table. The locations
and sizes of the various sections are described by the section header table, which
contains a fixed-size entry for each section in the object file.

Sandwiched between the ELF header and the section header table are the
sections themselves. A typical ELF relocatable object file contains the following
sections:

.text The machine code of the compiled program.

.rodata Read-only data such as the format strings in printf statements, and
jump tables for switch statements.

.data Initialized global and static C variables. Local C variables are maintained
at run time on the stack and do not appear in either the .data or .bss
sections.

.bss Uninitialized global and static C variables, along with any global or static
variables that are initialized to zero. This section occupies no actual space
in the object file; it is merely a placeholder. Object file formats distinguish
between initialized and uninitialized variables for space efficiency: unini-
tialized variables do not have to occupy any actual disk space in the object
file. At run time, these variables are allocated in memory with an initial
value of zero.
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Aside Why is uninitialized data called .bss?

The use of the term .bss to denote uninitialized data is universal. It was originally an acronym for the
“block started by symbol” directive from the IBM 704 assembly language (circa 1957) and the acronym
has stuck. A simple way to remember the difference between the .data and .bss sections is to think
of “bss” as an abbreviation for “Better Save Space!”

.symtab A symbol table with information about functions and global variables
that are defined and referenced in the program. Some programmers mis-
takenly believe that a program must be compiled with the -g option to
get symbol table information. In fact, every relocatable object file has
a symbol table in .symtab (unless the programmer has specifically re-
moved it with the strip command). However, unlike the symbol table
inside a compiler, the .symtab symbol table does not contain entries for
local variables.

.rel.text A list of locations in the .text section that will need to be modified
when the linker combines this object file with others. In general, any
instruction that calls an external function or references a global variable
will need to be modified. On the other hand, instructions that call local
functions do not need to be modified. Note that relocation information
is not needed in executable object files, and is usually omitted unless the
user explicitly instructs the linker to include it.

.rel.data Relocation information for any global variables that are referenced
or defined by the module. In general, any initialized global variable whose
initial value is the address of a global variable or externally defined func-
tion will need to be modified.

.debug A debugging symbol table with entries for local variables and typedefs
defined in the program, global variables defined and referenced in the
program, and the original C source file. It is only present if the compiler
driver is invoked with the -g option.

.line A mapping between line numbers in the original C source program and
machine code instructions in the .text section. It is only present if the
compiler driver is invoked with the -g option.

.strtab A string table for the symbol tables in the .symtab and .debug sec-
tions and for the section names in the section headers. A string table is a
sequence of null-terminated character strings.

7.5 Symbols and Symbol Tables

Each relocatable object module, m, has a symbol table that contains information
about the symbols that are defined and referenced by m. In the context of a linker,
there are three different kinds of symbols:
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. Global symbols that are defined by module m and that can be referenced by
other modules. Global linker symbols correspond to nonstatic C functions and
global variables.

. Global symbols that are referenced by module m but defined by some other
module. Such symbols are called externals and correspond to nonstatic C
functions and global variables that are defined in other modules.

. Local symbols that are defined and referenced exclusively by module m. These
correspond to static C functions and global variables that are defined with the
static attribute. These symbols are visible anywhere within module m, but
cannot be referenced by other modules.

It is important to realize that local linker symbols are not the same as local
program variables. The symbol table in .symtab does not contain any symbols
that correspond to local nonstatic program variables. These are managed at run
time on the stack and are not of interest to the linker.

Interestingly, local procedure variables that are defined with the C static
attribute are not managed on the stack. Instead, the compiler allocates space in
.data or .bss for each definition and creates a local linker symbol in the symbol
table with a unique name. For example, suppose a pair of functions in the same
module define a static local variable x:

1 int f()

2 {

3 static int x = 0;

4 return x;

5 }

6

7 int g()

8 {

9 static int x = 1;

10 return x;

11 }

In this case, the compiler exports a pair of local linker symbols with different names
to the assembler. For example, it might use x.1 for the definition in function f and
x.2 for the definition in function g.

Symbol tables are built by assemblers, using symbols exported by the compiler
into the assembly-language .s file. An ELF symbol table is contained in the
.symtab section. It contains an array of entries. Figure 7.4 shows the format of
each entry.

The name is a byte offset into the string table that points to the null-terminated
string name of the symbol. The value is the symbol’s address. For relocatable
modules, the value is an offset from the beginning of the section where the object
is defined. For executable object files, the value is an absolute run-time address.
The size is the size (in bytes) of the object. The type is usually either data or
function. The symbol table can also contain entries for the individual sections



Section 7.5 Symbols and Symbol Tables 713

New to C? Hiding variable and function names with static

C programmers use the static attribute to hide variable and function declarations inside modules,
much as you would use public and private declarations in Java and C++. In C, source files play the
role of modules. Any global variable or function declared with the static attribute is private to that
module. Similarly, any global variable or function declared without the static attribute is public and
can be accessed by any other module. It is good programming practice to protect your variables and
functions with the static attribute wherever possible.

code/link/elfstructs.c
1 typedef struct {

2 int name; /* String table offset */

3 char type:4, /* Function or data (4 bits) */

4 binding:4; /* Local or global (4 bits) */

5 char reserved; /* Unused */

6 short section; /* Section header index */

7 long value; /* Section offset or absolute address */

8 long size; /* Object size in bytes */

9 } Elf64_Symbol;

code/link/elfstructs.c

Figure 7.4 ELF symbol table entry. The type and binding fields are 4 bits each.

and for the path name of the original source file. So there are distinct types for
these objects as well. The binding field indicates whether the symbol is local or
global.

Each symbol is assigned to some section of the object file, denoted by the sec-
tion field, which is an index into the section header table. There are three special
pseudosections that don’t have entries in the section header table: ABS is for sym-
bols that should not be relocated. UNDEF is for undefined symbols—that is, sym-
bols that are referenced in this object module but defined elsewhere. COMMON
is for uninitialized data objects that are not yet allocated. For COMMON symbols,
the value field gives the alignment requirement, and size gives the minimum size.
Note that these pseudosections exist only in relocatable object files; they do not
exist in executable object files.

The distinction between COMMON and .bss is subtle. Modern versions of
gcc assign symbols in relocatable object files to COMMON and .bss using the
following convention:

COMMON Uninitialized global variables
.bss Uninitialized static variables, and global or static variables that are

initialized to zero



714 Chapter 7 Linking

The reason for this seemingly arbitrary distinction stems from the way the linker
performs symbol resolution, which we will explain in Section 7.6.

The GNU readelf program is a handy tool for viewing the contents of object
files. For example, here are the last three symbol table entries for the relocatable
object file main.o, from the example program in Figure 7.1. The first eight entries,
which are not shown, are local symbols that the linker uses internally.

Num: Value Size Type Bind Vis Ndx Name

8: 0000000000000000 24 FUNC GLOBAL DEFAULT 1 main

9: 0000000000000000 8 OBJECT GLOBAL DEFAULT 3 array

10: 0000000000000000 0 NOTYPE GLOBAL DEFAULT UND sum

In this example, we see an entry for the definition of global symbol main, a 24-
byte function located at an offset (i.e., value) of zero in the .text section. This
is followed by the definition of the global symbol array, an 8-byte object located
at an offset of zero in the .data section. The last entry comes from the reference
to the external symbol sum. readelf identifies each section by an integer index.
Ndx=1 denotes the .text section, and Ndx=3 denotes the .data section.

Practice Problem 7.1 (solution page 753)

This problem concerns the m.o and swap.o modules from Figure 7.5. For each
symbol that is defined or referenced in swap.o, indicate whether or not it will
have a symbol table entry in the .symtab section in module swap.o. If so, indicate
the module that defines the symbol (swap.oor m.o), the symbol type (local, global,
or extern), and the section (.text, .data, .bss, or COMMON) it is assigned to
in the module.

(a) m.c
code/link/m.c

1 void swap();

2

3 int buf[2] = {1, 2};

4

5 int main()

6 {

7 swap();

8 return 0;

9 }

code/link/m.c

(b) swap.c
code/link/swap.c

1 extern int buf[];

2

3 int *bufp0 = &buf[0];

4 int *bufp1;

5

6 void swap()

7 {

8 int temp;

9

10 bufp1 = &buf[1];

11 temp = *bufp0;

12 *bufp0 = *bufp1;

13 *bufp1 = temp;

14 }

code/link/swap.c
Figure 7.5 Example program for Practice Problem 7.1.
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Symbol .symtab entry? Symbol type Module where defined Section
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7.6 Symbol Resolution

The linker resolves symbol references by associating each reference with exactly
one symbol definition from the symbol tables of its input relocatable object files.
Symbol resolution is straightforward for references to local symbols that are de-
fined in the same module as the reference. The compiler allows only one definition
of each local symbol per module. The compiler also ensures that static local vari-
ables, which get local linker symbols, have unique names.

Resolving references to global symbols, however, is trickier. When the com-
piler encounters a symbol (either a variable or function name) that is not defined
in the current module, it assumes that it is defined in some other module, gener-
ates a linker symbol table entry, and leaves it for the linker to handle. If the linker
is unable to find a definition for the referenced symbol in any of its input modules,
it prints an (often cryptic) error message and terminates. For example, if we try to
compile and link the following source file on a Linux machine,

1 void foo(void);

2

3 int main() {

4 foo();

5 return 0;

6 }

then the compiler runs without a hitch, but the linker terminates when it cannot
resolve the reference to foo:

linux> gcc -Wall -Og -o linkerror linkerror.c

/tmp/ccSz5uti.o: In function ‘main’:

/tmp/ccSz5uti.o(.text+0x7): undefined reference to ‘foo’

Symbol resolution for global symbols is also tricky because multiple object
modules might define global symbols with the same name. In this case, the linker
must either flag an error or somehow choose one of the definitions and discard
the rest. The approach adopted by Linux systems involves cooperation between
the compiler, assembler, and linker and can introduce some baffling bugs to the
unwary programmer.
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Aside Mangling of linker symbols in C++ and Java

Both C++ and Java allow overloaded methods that have the same name in the source code but different
parameter lists. So how does the linker tell the difference between these different overloaded functions?
Overloaded functions in C++ and Java work because the compiler encodes each unique method and
parameter list combination into a unique name for the linker. This encoding process is called mangling,
and the inverse process is known as demangling.

Happily, C++ and Java use compatible mangling schemes. A mangled class name consists of the
integer number of characters in the name followed by the original name. For example, the class Foo
is encoded as 3Foo. A method is encoded as the original method name, followed by __, followed
by the mangled class name, followed by single letter encodings of each argument. For example,
Foo::bar(int, long) is encoded as bar__3Fooil. Similar schemes are used to mangle global variable
and template names.

7.6.1 How Linkers Resolve Duplicate Symbol Names

The input to the linker is a collection of relocatable object modules. Each of these
modules defines a set of symbols, some of which are local (visible only to the
module that defines it), and some of which are global (visible to other modules).
What happens if multiple modules define global symbols with the same name?
Here is the approach that Linux compilation systems use.

At compile time, the compiler exports each global symbol to the assembler
as either strong or weak, and the assembler encodes this information implicitly
in the symbol table of the relocatable object file. Functions and initialized global
variables get strong symbols. Uninitialized global variables get weak symbols.

Given this notion of strong and weak symbols, Linux linkers use the following
rules for dealing with duplicate symbol names:

Rule 1. Multiple strong symbols with the same name are not allowed.

Rule 2. Given a strong symbol and multiple weak symbols with the same name,
choose the strong symbol.

Rule 3. Given multiple weak symbols with the same name, choose any of the
weak symbols.

For example, suppose we attempt to compile and link the following two C modules:

1 /* foo1.c */

2 int main()

3 {

4 return 0;

5 }

1 /* bar1.c */

2 int main()

3 {

4 return 0;

5 }
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In this case, the linker will generate an error message because the strong symbol
main is defined multiple times (rule 1):

linux> gcc foo1.c bar1.c

/tmp/ccq2Uxnd.o: In function ‘main’:

bar1.c:(.text+0x0): multiple definition of ‘main’

Similarly, the linker will generate an error message for the following modules
because the strong symbol x is defined twice (rule 1):

1 /* foo2.c */

2 int x = 15213;

3

4 int main()

5 {

6 return 0;

7 }

1 /* bar2.c */

2 int x = 15213;

3

4 void f()

5 {

6 }

However, if x is uninitialized in one module, then the linker will quietly choose
the strong symbol defined in the other (rule 2):

1 /* foo3.c */

2 #include <stdio.h>

3 void f(void);

4

5 int x = 15213;

6

7 int main()

8 {

9 f();

10 printf("x = %d\n", x);

11 return 0;

12 }

1 /* bar3.c */

2 int x;

3

4 void f()

5 {

6 x = 15212;

7 }
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At run time, function f changes the value of x from 15213 to 15212, which
might come as an unwelcome surprise to the author of function main! Notice that
the linker normally gives no indication that it has detected multiple definitions
of x:

linux> gcc -o foobar3 foo3.c bar3.c

linux> ./foobar3

x = 15212

The same thing can happen if there are two weak definitions of x (rule 3):

1 /* foo4.c */

2 #include <stdio.h>

3 void f(void);

4

5 int x;

6

7 int main()

8 {

9 x = 15213;

10 f();

11 printf("x = %d\n", x);

12 return 0;

13 }

1 /* bar4.c */

2 int x;

3

4 void f()

5 {

6 x = 15212;

7 }

The application of rules 2 and 3 can introduce some insidious run-time bugs
that are incomprehensible to the unwary programmer, especially if the duplicate
symbol definitions have different types. Consider the following example, in which
x is inadvertently defined as an int in one module and a double in another:

1 /* foo5.c */

2 #include <stdio.h>

3 void f(void);

4

5 int y = 15212;

6 int x = 15213;

7

8 int main()

9 {

10 f();
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11 printf("x = 0x%x y = 0x%x \n",

12 x, y);

13 return 0;

14 }

1 /* bar5.c */

2 double x;

3

4 void f()

5 {

6 x = -0.0;

7 }

On an x86-64/Linux machine, doubles are 8 bytes and ints are 4 bytes. On
our system, the address of x is 0x601020 and the address of y is 0x601024. Thus,
the assignment x = -0.0 in line 6 of bar5.c will overwrite the memory locations
for x and y (lines 5 and 6 in foo5.c) with the double-precision floating-point
representation of negative zero!

linux> gcc -Wall -Og -o foobar5 foo5.c bar5.c

/usr/bin/ld: Warning: alignment 4 of symbol ‘x’ in /tmp/cclUFK5g.o

is smaller than 8 in /tmp/ccbTLcb9.o

linux> ./foobar5

x = 0x0 y = 0x80000000

This is a subtle and nasty bug, especially because it triggers only a warning from
the linker, and because it typically manifests itself much later in the execution
of the program, far away from where the error occurred. In a large system with
hundreds of modules, a bug of this kind is extremely hard to fix, especially because
many programmers are not aware of how linkers work, and because they often
ignore compiler warnings. When in doubt, invoke the linker with a flag such
as the gcc -fno-common flag, which triggers an error if it encounters multiply-
defined global symbols. Or use the -Werror option, which turns all warnings into
errors.

In Section 7.5, we saw how the compiler assigns symbols to COMMON and
.bss using a seemingly arbitrary convention. Actually, this convention is due to
the fact that in some cases the linker allows multiple modules to define global
symbols with the same name. When the compiler is translating some module and
encounters a weak global symbol, say, x, it does not know if other modules also
define x, and if so, it cannot predict which of the multiple instances of x the linker
might choose. So the compiler defers the decision to the linker by assigning x to
COMMON. On the other hand, if x is initialized to zero, then it is a strong symbol
(and thus must be unique by rule 2), so the compiler can confidently assign it to
.bss. Similarly, static symbols are unique by construction, so the compiler can
confidently assign them to either .data or .bss.
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Practice Problem 7.2 (solution page 754)

In this problem, let REF(x.i) → DEF(x.k) denote that the linker will associate an
arbitrary reference to symbol x in module i to the definition of x in module k.
For each example that follows, use this notation to indicate how the linker would
resolve references to the multiply-defined symbol in each module. If there is a
link-time error (rule 1), write “error”. If the linker arbitrarily chooses one of the
definitions (rule 3), write “unknown”.

A. /* Module 1 */ /* Module 2 */

int main() int main;

{ int p2()

} {

}

(a) REF(main.1) → DEF( . )

(b) REF(main.2) → DEF( . )

B. /* Module 1 */ /* Module 2 */

void main() int main = 1;

{ int p2()

} {

}

(a) REF(main.1) → DEF( . )

(b) REF(main.2) → DEF( . )

C. /* Module 1 */ /* Module 2 */

int x; double x = 1.0;

void main() int p2()

{ {

} }

(a) REF(x.1) → DEF( . )

(b) REF(x.2) → DEF( . )

7.6.2 Linking with Static Libraries

So far, we have assumed that the linker reads a collection of relocatable object files
and links them together into an output executable file. In practice, all compilation
systems provide a mechanism for packaging related object modules into a single
file called a static library, which can then be supplied as input to the linker. When
it builds the output executable, the linker copies only the object modules in the
library that are referenced by the application program.

Why do systems support the notion of libraries? Consider ISO C99, which
defines an extensive collection of standard I/O, string manipulation, and integer
math functions such as atoi, printf, scanf, strcpy, and rand. They are available
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to every C program in the libc.a library. ISO C99 also defines an extensive
collection of floating-point math functions such assin, cos, andsqrt in thelibm.a
library.

Consider the different approaches that compiler developers might use to pro-
vide these functions to users without the benefit of static libraries. One approach
would be to have the compiler recognize calls to the standard functions and to
generate the appropriate code directly. Pascal, which provides a small set of stan-
dard functions, takes this approach, but it is not feasible for C, because of the large
number of standard functions defined by the C standard. It would add significant
complexity to the compiler and would require a new compiler version each time a
function was added, deleted, or modified. To application programmers, however,
this approach would be quite convenient because the standard functions would
always be available.

Another approach would be to put all of the standard C functions in a single
relocatable object module, say, libc.o, that application programmers could link
into their executables:

linux> gcc main.c /usr/lib/libc.o

This approach has the advantage that it would decouple the implementation of the
standard functions from the implementation of the compiler, and would still be
reasonably convenient for programmers. However, a big disadvantage is that ev-
ery executable file in a system would now contain a complete copy of the collection
of standard functions, which would be extremely wasteful of disk space. (On our
system, libc.a is about 5 MB and libm.a is about 2 MB.) Worse, each running
program would now contain its own copy of these functions in memory, which
would be extremely wasteful of memory. Another big disadvantage is that any
change to any standard function, no matter how small, would require the library
developer to recompile the entire source file, a time-consuming operation that
would complicate the development and maintenance of the standard functions.

We could address some of these problems by creating a separate relocatable
file for each standard function and storing them in a well-known directory. How-
ever, this approach would require application programmers to explicitly link the
appropriate object modules into their executables, a process that would be error
prone and time consuming:

linux> gcc main.c /usr/lib/printf.o /usr/lib/scanf.o . . .

The notion of a static library was developed to resolve the disadvantages of
these various approaches. Related functions can be compiled into separate object
modules and then packaged in a single static library file. Application programs
can then use any of the functions defined in the library by specifying a single
filename on the command line. For example, a program that uses functions from
the C standard library and the math library could be compiled and linked with a
command of the form

linux> gcc main.c /usr/lib/libm.a /usr/lib/libc.a
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(a) addvec.o
code/link/addvec.c

1 int addcnt = 0;

2

3 void addvec(int *x, int *y,

4 int *z, int n)

5 {

6 int i;

7

8 addcnt++;

9

10 for (i = 0; i < n; i++)

11 z[i] = x[i] + y[i];

12 }

code/link/addvec.c

(b) multvec.o
code/link/multvec.c

1 int multcnt = 0;

2

3 void multvec(int *x, int *y,

4 int *z, int n)

5 {

6 int i;

7

8 multcnt++;

9

10 for (i = 0; i < n; i++)

11 z[i] = x[i] * y[i];

12 }

code/link/multvec.c

Figure 7.6 Member object files in the libvector library.

At link time, the linker will only copy the object modules that are referenced
by the program, which reduces the size of the executable on disk and in memory.
On the other hand, the application programmer only needs to include the names
of a few library files. (In fact, C compiler drivers always pass libc.a to the linker,
so the reference to libc.a mentioned previously is unnecessary.)

On Linux systems, static libraries are stored on disk in a particular file format
known as an archive. An archive is a collection of concatenated relocatable object
files, with a header that describes the size and location of each member object file.
Archive filenames are denoted with the .a suffix.

To make our discussion of libraries concrete, consider the pair of vector
routines in Figure 7.6. Each routine, defined in its own object module, performs a
vector operation on a pair of input vectors and stores the result in an output vector.
As a side effect, each routine records the number of times it has been called by
incrementing a global variable. (This will be useful when we explain the idea of
position-independent code in Section 7.12.)

To create a static library of these functions, we would use the ar tool as follows:

linux> gcc -c addvec.c multvec.c

linux> ar rcs libvector.a addvec.o multvec.o

To use the library, we might write an application such as main2.c in Figure 7.7,
which invokes the addvec library routine. The include (or header) file vector.h
defines the function prototypes for the routines in libvector.a,

To build the executable, we would compile and link the input files main2.o
and libvector.a:

linux> gcc -c main2.c

linux> gcc -static -o prog2c main2.o ./libvector.a
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code/link/main2.c
1 #include <stdio.h>

2 #include "vector.h"

3

4 int x[2] = {1, 2};

5 int y[2] = {3, 4};

6 int z[2];

7

8 int main()

9 {

10 addvec(x, y, z, 2);

11 printf("z = [%d %d]\n", z[0], z[1]);

12 return 0;

13 }

code/link/main2.c

Figure 7.7 Example program 2. This program invokes a function in the libvector
library.

main2.c vector.h

libvector.a libc.a

addvec.o printf.o and any other
modules called by printf.o

main2.o

Translators
(cpp, cc1, as)

Linker (ld)

prog2c Fully linked
executable object file

Relocatable
object files

Source files

Static libraries

Figure 7.8 Linking with static libraries.

or equivalently,

linux> gcc -c main2.c

linux> gcc -static -o prog2c main2.o -L. -lvector

Figure 7.8 summarizes the activity of the linker. The -static argument tells the
compiler driver that the linker should build a fully linked executable object file
that can be loaded into memory and run without any further linking at load time.
The -lvector argument is a shorthand for libvector.a, and the -L. argument
tells the linker to look for libvector.a in the current directory.

When the linker runs, it determines that the addvec symbol defined by
addvec.o is referenced by main2.o, so it copies addvec.o into the executable.
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Since the program doesn’t reference any symbols defined by multvec.o, the linker
does not copy this module into the executable. The linker also copies the printf.o
module from libc.a, along with a number of other modules from the C run-time
system.

7.6.3 How Linkers Use Static Libraries to Resolve References

While static libraries are useful, they are also a source of confusion to program-
mers because of the way the Linux linker uses them to resolve external references.
During the symbol resolution phase, the linker scans the relocatable object files
and archives left to right in the same sequential order that they appear on the
compiler driver’s command line. (The driver automatically translates any .c files
on the command line into .o files.) During this scan, the linker maintains a set E

of relocatable object files that will be merged to form the executable, a set U of
unresolved symbols (i.e., symbols referred to but not yet defined), and a set D of
symbols that have been defined in previous input files. Initially, E, U , and D are
empty.

. For each input file f on the command line, the linker determines if f is an
object file or an archive. If f is an object file, the linker adds f to E, updates
U and D to reflect the symbol definitions and references in f , and proceeds
to the next input file.

. If f is an archive, the linker attempts to match the unresolved symbols in U

against the symbols defined by the members of the archive. If some archive
member m defines a symbol that resolves a reference in U , then m is added
to E, and the linker updates U and D to reflect the symbol definitions and
references in m. This process iterates over the member object files in the
archive until a fixed point is reached where U and D no longer change. At
this point, any member object files not contained in E are simply discarded
and the linker proceeds to the next input file.

. If U is nonempty when the linker finishes scanning the input files on the
command line, it prints an error and terminates. Otherwise, it merges and
relocates the object files in E to build the output executable file.

Unfortunately, this algorithm can result in some baffling link-time errors
because the ordering of libraries and object files on the command line is significant.
If the library that defines a symbol appears on the command line before the object
file that references that symbol, then the reference will not be resolved and linking
will fail. For example, consider the following:

linux> gcc -static ./libvector.a main2.c

/tmp/cc9XH6Rp.o: In function ‘main’:

/tmp/cc9XH6Rp.o(.text+0x18): undefined reference to ‘addvec’

What happened? When libvector.a is processed, U is empty, so no member
object files from libvector.a are added to E. Thus, the reference to addvec is
never resolved and the linker emits an error message and terminates.



Section 7.7 Relocation 725

The general rule for libraries is to place them at the end of the command
line. If the members of the different libraries are independent, in that no member
references a symbol defined by another member, then the libraries can be placed
at the end of the command line in any order. If, on the other hand, the libraries
are not independent, then they must be ordered so that for each symbol s that
is referenced externally by a member of an archive, at least one definition of s

follows a reference to s on the command line. For example, suppose foo.c calls
functions in libx.a and libz.a that call functions in liby.a. Then libx.a and
libz.a must precede liby.a on the command line:

linux> gcc foo.c libx.a libz.a liby.a

Libraries can be repeated on the command line if necessary to satisfy the
dependence requirements. For example, suppose foo.c calls a function in libx.a
that calls a function in liby.a that calls a function in libx.a. Then libx.a must
be repeated on the command line:

linux> gcc foo.c libx.a liby.a libx.a

Alternatively, we could combine libx.a and liby.a into a single archive.

Practice Problem 7.3 (solution page 754)

Let a and b denote object modules or static libraries in the current directory, and
let a→b denote that a depends on b, in the sense that b defines a symbol that is
referenced by a. For each of the following scenarios, show the minimal command
line (i.e., one with the least number of object file and library arguments) that will
allow the static linker to resolve all symbol references.

A. p.o → libx.a

B. p.o → libx.a → liby.a

C. p.o → libx.a → liby.a and liby.a → libx.a → p.o

7.7 Relocation

Once the linker has completed the symbol resolution step, it has associated each
symbol reference in the code with exactly one symbol definition (i.e., a symbol
table entry in one of its input object modules). At this point, the linker knows
the exact sizes of the code and data sections in its input object modules. It is now
ready to begin the relocation step, where it merges the input modules and assigns
run-time addresses to each symbol. Relocation consists of two steps:

1. Relocating sections and symbol definitions. In this step, the linker merges all
sections of the same type into a new aggregate section of the same type. For
example, the .data sections from the input modules are all merged into one
section that will become the .data section for the output executable object
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file. The linker then assigns run-time memory addresses to the new aggregate
sections, to each section defined by the input modules, and to each symbol
defined by the input modules. When this step is complete, each instruction
and global variable in the program has a unique run-time memory address.

2. Relocating symbol references within sections. In this step, the linker modifies
every symbol reference in the bodies of the code and data sections so that
they point to the correct run-time addresses. To perform this step, the linker
relies on data structures in the relocatable object modules known as relocation
entries, which we describe next.

7.7.1 Relocation Entries

When an assembler generates an object module, it does not know where the code
and data will ultimately be stored in memory. Nor does it know the locations of
any externally defined functions or global variables that are referenced by the
module. So whenever the assembler encounters a reference to an object whose
ultimate location is unknown, it generates a relocation entry that tells the linker
how to modify the reference when it merges the object file into an executable.
Relocation entries for code are placed in .rel.text. Relocation entries for data
are placed in .rel.data.

Figure 7.9 shows the format of an ELF relocation entry. The offset is the
section offset of the reference that will need to be modified. The symbol identifies
the symbol that the modified reference should point to. The type tells the linker
how to modify the new reference. The addend is a signed constant that is used by
some types of relocations to bias the value of the modified reference.

ELF defines 32 different relocation types, many quite arcane. We are con-
cerned with only the two most basic relocation types:

R_X86_64_PC32. Relocate a reference that uses a 32-bit PC-relative address.
Recall from Section 3.6.3 that a PC-relative address is an offset from
the current run-time value of the program counter (PC). When the CPU
executes an instruction using PC-relative addressing, it forms the effective
address (e.g., the target of the call instruction) by adding the 32-bit value

code/link/elfstructs.c
1 typedef struct {

2 long offset; /* Offset of the reference to relocate */

3 long type:32, /* Relocation type */

4 symbol:32; /* Symbol table index */

5 long addend; /* Constant part of relocation expression */

6 } Elf64_Rela;

code/link/elfstructs.c

Figure 7.9 ELF relocation entry. Each entry identifies a reference that must be relocated
and specifies how to compute the modified reference.
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encoded in the instruction to the current run-time value of the PC, which
is always the address of the next instruction in memory.

R_X86_64_32. Relocate a reference that uses a 32-bit absolute address. With
absolute addressing, the CPU directly uses the 32-bit value encoded in
the instruction as the effective address, without further modifications.

These two relocation types support the x86-64 small code model, which as-
sumes that the total size of the code and data in the executable object file is smaller
than 2 GB, and thus can be accessed at run-time using 32-bit PC-relative addresses.
The small code model is the default for gcc. Programs larger than 2 GB can be
compiled using the -mcmodel=medium (medium code model) and -mcmodel=large
(large code model) flags, but we won’t discuss those.

7.7.2 Relocating Symbol References

Figure 7.10 shows the pseudocode for the linker’s relocation algorithm. Lines 1
and 2 iterate over each section s and each relocation entry r associated with each
section. For concreteness, assume that each section s is an array of bytes and that
each relocation entry r is a struct of type Elf64_Rela, as defined in Figure 7.9.
Also, assume that when the algorithm runs, the linker has already chosen run-
time addresses for each section (denoted ADDR(s)) and each symbol (denoted
ADDR(r.symbol)). Line 3 computes the address in the s array of the 4-byte ref-
erence that needs to be relocated. If this reference uses PC-relative addressing,
then it is relocated by lines 5–9. If the reference uses absolute addressing, then it
is relocated by lines 11–13.

1 foreach section s {

2 foreach relocation entry r {

3 refptr = s + r.offset; /* ptr to reference to be relocated */

4

5 /* Relocate a PC-relative reference */

6 if (r.type == R_X86_64_PC32) {

7 refaddr = ADDR(s) + r.offset; /* ref’s run-time address */

8 *refptr = (unsigned) (ADDR(r.symbol) + r.addend - refaddr);

9 }

10

11 /* Relocate an absolute reference */

12 if (r.type == R_X86_64_32)

13 *refptr = (unsigned) (ADDR(r.symbol) + r.addend);

14 }

15 }

Figure 7.10 Relocation algorithm.
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code/link/main-relo.d
1 0000000000000000 <main>:

2 0: 48 83 ec 08 sub $0x8,%rsp

3 4: be 02 00 00 00 mov $0x2,%esi

4 9: bf 00 00 00 00 mov $0x0,%edi %edi = &array

5 a: R_X86_64_32 array Relocation entry

6 e: e8 00 00 00 00 callq 13 <main+0x13> sum()

7 f: R_X86_64_PC32 sum-0x4 Relocation entry

8 13: 48 83 c4 08 add $0x8,%rsp

9 17: c3 retq

code/link/main-relo.d

Figure 7.11 Code and relocation entries from main.o. The original C code is in Figure 7.1.

Let’s see how the linker uses this algorithm to relocate the references in our
example program in Figure 7.1. Figure 7.11 shows the disassembled code from
main.o, as generated by the GNU objdump tool (objdump -dx main.o).

The main function references two global symbols, array and sum. For each
reference, the assembler has generated a relocation entry, which is displayed on
the following line.2 The relocation entries tell the linker that the reference to sum
should be relocated using a 32-bit PC-relative address, and the reference to array
should be relocated using a 32-bit absolute address. The next two sections detail
how the linker relocates these references.

Relocating PC-Relative References

In line 6 in Figure 7.11, function main calls the sum function, which is defined in
module sum.o. The call instruction begins at section offset 0xe and consists of the
1-byte opcode 0xe8, followed by a placeholder for the 32-bit PC-relative reference
to the target sum.

The corresponding relocation entry r consists of four fields:

r.offset = 0xf

r.symbol = sum

r.type = R_X86_64_PC32

r.addend = -4

These fields tell the linker to modify the 32-bit PC-relative reference starting at
offset 0xf so that it will point to the sum routine at run time. Now, suppose that
the linker has determined that

ADDR(s) = ADDR(.text) = 0x4004d0

2. Recall that relocation entries and instructions are actually stored in different sections of the object
file. The objdump tool displays them together for convenience.
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and

ADDR(r.symbol) = ADDR(sum) = 0x4004e8

Using the algorithm in Figure 7.10, the linker first computes the run-time
address of the reference (line 7):

refaddr = ADDR(s) + r.offset

= 0x4004d0 + 0xf

= 0x4004df

It then updates the reference so that it will point to the sum routine at run time
(line 8):

*refptr = (unsigned) (ADDR(r.symbol) + r.addend - refaddr)

= (unsigned) (0x4004e8 + (-4) - 0x4004df)

= (unsigned) (0x5)

In the resulting executable object file, the call instruction has the following
relocated form:

4004de: e8 05 00 00 00 callq 4004e8 <sum> sum()

At run time, the call instruction will be located at address 0x4004de. When
the CPU executes the call instruction, the PC has a value of 0x4004e3, which
is the address of the instruction immediately following the call instruction. To
execute the call instruction, the CPU performs the following steps:

1. Push PC onto stack
2. PC ← PC + 0x5= 0x4004e3+ 0x5= 0x4004e8

Thus, the next instruction to execute is the first instruction of the sum routine,
which of course is what we want!

Relocating Absolute References

Relocating absolute references is straightforward. For example, in line 4 in Fig-
ure 7.11, the mov instruction copies the address of array (a 32-bit immediate value)
into register %edi. The mov instruction begins at section offset 0x9 and consists of
the 1-byte opcode 0xbf, followed by a placeholder for the 32-bit absolute refer-
ence to array.

The corresponding relocation entry r consists of four fields:

r.offset = 0xa

r.symbol = array

r.type = R_X86_64_32

r.addend = 0

These fields tell the linker to modify the absolute reference starting at offset 0xa
so that it will point to the first byte of array at run time. Now, suppose that the
linker has determined that
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(a) Relocated .text section

1 00000000004004d0 <main>:

2 4004d0: 48 83 ec 08 sub $0x8,%rsp

3 4004d4: be 02 00 00 00 mov $0x2,%esi

4 4004d9: bf 18 10 60 00 mov $0x601018,%edi %edi = &array

5 4004de: e8 05 00 00 00 callq 4004e8 <sum> sum()

6 4004e3: 48 83 c4 08 add $0x8,%rsp

7 4004e7: c3 retq

8 00000000004004e8 <sum>:

9 4004e8: b8 00 00 00 00 mov $0x0,%eax

10 4004ed: ba 00 00 00 00 mov $0x0,%edx

11 4004f2: eb 09 jmp 4004fd <sum+0x15>

12 4004f4: 48 63 ca movslq %edx,%rcx

13 4004f7: 03 04 8f add (%rdi,%rcx,4),%eax

14 4004fa: 83 c2 01 add $0x1,%edx

15 4004fd: 39 f2 cmp %esi,%edx

16 4004ff: 7c f3 jl 4004f4 <sum+0xc>

17 400501: f3 c3 repz retq

(b) Relocated .data section

1 0000000000601018 <array>:

2 601018: 01 00 00 00 02 00 00 00

Figure 7.12 Relocated .text and .data sections for the executable file prog. The original C code is in
Figure 7.1.

ADDR(r.symbol) = ADDR(array) = 0x601018

The linker updates the reference using line 13 of the algorithm in Figure 7.10:

*refptr = (unsigned) (ADDR(r.symbol) + r.addend)

= (unsigned) (0x601018 + 0)

= (unsigned) (0x601018)

In the resulting executable object file, the reference has the following relocated
form:

4004d9: bf 18 10 60 00 mov $0x601018,%edi %edi = &array

Putting it all together, Figure 7.12 shows the relocated .text and .data sections
in the final executable object file. At load time, the loader can copy the bytes
from these sections directly into memory and execute the instructions without
any further modifications.

Practice Problem 7.4 (solution page 754)

This problem concerns the relocated program in Figure 7.12(a).
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A. What is the hex address of the relocated reference to sum in line 5?

B. What is the hex value of the relocated reference to sum in line 5?

Practice Problem 7.5 (solution page 754)

Consider the call to function swap in object file m.o (Figure 7.5).

9: e8 00 00 00 00 callq e <main+0xe> swap()

with the following relocation entry:

r.offset = 0xa

r.symbol = swap

r.type = R_X86_64_PC32

r.addend = -4

Now suppose that the linker relocates .text in m.o to address 0x4004d0 and swap
to address 0x4004e8. Then what is the value of the relocated reference to swap in
the callq instruction?

7.8 Executable Object Files

We have seen how the linker merges multiple object files into a single executable
object file. Our example C program, which began life as a collection of ASCII
text files, has been transformed into a single binary file that contains all of the
information needed to load the program into memory and run it. Figure 7.13
summarizes the kinds of information in a typical ELF executable file.

Section header table 
Describes
object file
sections

Maps contiguous file
sections to run-time
memory segments

.strtab

.line

.debug

.symtab

.bss

.data

.rodata

.text

.init

Segment header table

ELF header
0

Read-only memory segment 
(code segment)

Read/write memory segment 
(data segment)

Symbol table and
debugging info are not
loaded into memory

Figure 7.13 Typical ELF executable object file.
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code/link/prog-exe.d
Read-only code segment

1 LOAD off 0x0000000000000000 vaddr 0x0000000000400000 paddr 0x0000000000400000 align 2**21

2 filesz 0x000000000000069c memsz 0x000000000000069c flags r-x

Read/write data segment

3 LOAD off 0x0000000000000df8 vaddr 0x0000000000600df8 paddr 0x0000000000600df8 align 2**21

4 filesz 0x0000000000000228 memsz 0x0000000000000230 flags rw-

code/link/prog-exe.d

Figure 7.14 Program header table for the example executable prog. off: offset in object file;
vaddr/paddr: memory address; align: alignment requirement; filesz: segment size in object file;
memsz: segment size in memory; flags: run-time permissions.

The format of an executable object file is similar to that of a relocatable object
file. The ELF header describes the overall format of the file. It also includes the
program’s entry point, which is the address of the first instruction to execute when
the program runs. The .text, .rodata, and .data sections are similar to those in
a relocatable object file, except that these sections have been relocated to their
eventual run-time memory addresses. The .init section defines a small function,
called _init, that will be called by the program’s initialization code. Since the
executable is fully linked (relocated), it needs no .rel sections.

ELF executables are designed to be easy to load into memory, with contigu-
ous chunks of the executable file mapped to contiguous memory segments. This
mapping is described by the program header table. Figure 7.14 shows part of the
program header table for our example executable prog, as displayed by objdump.

From the program header table, we see that two memory segments will be
initialized with the contents of the executable object file. Lines 1 and 2 tell us
that the first segment (the code segment) has read/execute permissions, starts at
memory address 0x400000, has a total size in memory of 0x69c bytes, and is
initialized with the first 0x69c bytes of the executable object file, which includes
the ELF header, the program header table, and the .init, .text, and .rodata
sections.

Lines 3 and 4 tell us that the second segment (the data segment) has read/write
permissions, starts at memory address 0x600df8, has a total memory size of 0x230
bytes, and is initialized with the 0x228 bytes in the .data section starting at offset
0xdf8 in the object file. The remaining 8 bytes in the segment correspond to .bss
data that will be initialized to zero at run time.

For any segment s, the linker must choose a starting address, vaddr, such that

vaddr mod align = offmod align

where off is the offset of the segment’s first section in the object file, and align
is the alignment specified in the program header (221 = 0x200000). For example,
in the data segment in Figure 7.14,
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vaddr mod align = 0x600df8 mod 0x200000= 0xdf8

and

offmod align = 0xdf8 mod 0x200000= 0xdf8

This alignment requirement is an optimization that enables segments in the object
file to be transferred efficiently to memory when the program executes. The reason
is somewhat subtle and is due to the way that virtual memory is organized as large
contiguous power-of-2 chunks of bytes. You will learn all about virtual memory in
Chapter 9.

7.9 Loading Executable Object Files

To run an executable object file prog, we can type its name to the Linux shell’s
command line:

linux> ./prog

Since prog does not correspond to a built-in shell command, the shell assumes that
prog is an executable object file, which it runs for us by invoking some memory-
resident operating system code known as the loader. Any Linux program can
invoke the loader by calling the execve function, which we will describe in detail in
Section 8.4.6. The loader copies the code and data in the executable object file from
disk into memory and then runs the program by jumping to its first instruction, or
entry point. This process of copying the program into memory and then running
it is known as loading.

Every running Linux program has a run-time memory image similar to the
one in Figure 7.15. On Linux x86-64 systems, the code segment starts at address
0x400000, followed by the data segment. The run-time heap follows the data
segment and grows upward via calls to themalloc library. (We will describemalloc
and the heap in detail in Section 9.9.) This is followed by a region that is reserved
for shared modules. The user stack starts below the largest legal user address
(248 − 1) and grows down, toward smaller memory addresses. The region above
the stack, starting at address 248, is reserved for the code and data in the kernel,
which is the memory-resident part of the operating system.

For simplicity, we’ve drawn the heap, data, and code segments as abutting
each other, and we’ve placed the top of the stack at the largest legal user ad-
dress. In practice, there is a gap between the code and data segments due to the
alignment requirement on the .data segment (Section 7.8). Also, the linker uses
address-space layout randomization (ASLR, Section 3.10.4) when it assigns run-
time addresses to the stack, shared library, and heap segments. Even though the
locations of these regions change each time the program is run, their relative po-
sitions are the same.

When the loader runs, it creates a memory image similar to the one shown
in Figure 7.15. Guided by the program header table, it copies chunks of the
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Figure 7.15
Linux x86-64 run-time
memory image. Gaps
due to segment alignment
requirements and address-
space layout randomization
(ASLR) are not shown. Not
to scale.
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executable object file into the code and data segments. Next, the loader jumps
to the program’s entry point, which is always the address of the _start function.
This function is defined in the system object file crt1.o and is the same for all C
programs. The _start function calls the system startup function, __libc_start_
main, which is defined in libc.so. It initializes the execution environment, calls
the user-level main function, handles its return value, and if necessary returns
control to the kernel.

7.10 Dynamic Linking with Shared Libraries

The static libraries that we studied in Section 7.6.2 address many of the issues as-
sociated with making large collections of related functions available to application
programs. However, static libraries still have some significant disadvantages. Static
libraries, like all software, need to be maintained and updated periodically. If ap-
plication programmers want to use the most recent version of a library, they must
somehow become aware that the library has changed and then explicitly relink
their programs against the updated library.

Another issue is that almost every C program uses standard I/O functions such
as printf and scanf. At run time, the code for these functions is duplicated in the
text segment of each running process. On a typical system that is running hundreds
of processes, this can be a significant waste of scarce memory system resources.
(An interesting property of memory is that it is always a scarce resource, regardless
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Aside How do loaders really work?

Our description of loading is conceptually correct but intentionally not entirely accurate. To understand
how loading really works, you must understand the concepts of processes, virtual memory, and memory
mapping, which we haven’t discussed yet. As we encounter these concepts later in Chapters 8 and 9,
we will revisit loading and gradually reveal the mystery to you.

For the impatient reader, here is a preview of how loading really works: Each program in a Linux
system runs in the context of a process with its own virtual address space. When the shell runs a program,
the parent shell process forks a child process that is a duplicate of the parent. The child process invokes
the loader via the execve system call. The loader deletes the child’s existing virtual memory segments
and creates a new set of code, data, heap, and stack segments. The new stack and heap segments are
initialized to zero. The new code and data segments are initialized to the contents of the executable
file by mapping pages in the virtual address space to page-size chunks of the executable file. Finally,
the loader jumps to the _start address, which eventually calls the application’s main routine. Aside
from some header information, there is no copying of data from disk to memory during loading. The
copying is deferred until the CPU references a mapped virtual page, at which point the operating system
automatically transfers the page from disk to memory using its paging mechanism.

of how much there is in a system. Disk space and kitchen trash cans share this same
property.)

Shared libraries are modern innovations that address the disadvantages of
static libraries. A shared library is an object module that, at either run time or load
time, can be loaded at an arbitrary memory address and linked with a program in
memory. This process is known as dynamic linking and is performed by a program
called a dynamic linker. Shared libraries are also referred to as shared objects, and
on Linux systems they are indicated by the .so suffix. Microsoft operating systems
make heavy use of shared libraries, which they refer to as DLLs (dynamic link
libraries).

Shared libraries are “shared” in two different ways. First, in any given file
system, there is exactly one .so file for a particular library. The code and data in
this.sofile are shared by all of the executable object files that reference the library,
as opposed to the contents of static libraries, which are copied and embedded in
the executables that reference them. Second, a single copy of the .text section of
a shared library in memory can be shared by different running processes. We will
explore this in more detail when we study virtual memory in Chapter 9.

Figure 7.16 summarizes the dynamic linking process for the example program
in Figure 7.7. To build a shared library libvector.so of our example vector
routines in Figure 7.6, we invoke the compiler driver with some special directives
to the compiler and linker:

linux> gcc -shared -fpic -o libvector.so addvec.c multvec.c

The -fpic flag directs the compiler to generate position-independent code (more
on this in the next section). The -shared flag directs the linker to create a shared
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Figure 7.16
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object file. Once we have created the library, we would then link it into our example
program in Figure 7.7:

linux> gcc -o prog2l main2.c ./libvector.so

This creates an executable object file prog2l in a form that can be linked with
libvector.so at run time. The basic idea is to do some of the linking statically
when the executable file is created, and then complete the linking process dynami-
cally when the program is loaded. It is important to realize that none of the code or
data sections from libvector.so are actually copied into the executable prog2l
at this point. Instead, the linker copies some relocation and symbol table informa-
tion that will allow references to code and data in libvector.so to be resolved
at load time.

When the loader loads and runs the executable prog2l, it loads the partially
linked executable prog2l, using the techniques discussed in Section 7.9. Next, it
notices that prog2l contains a .interp section, which contains the path name of
the dynamic linker, which is itself a shared object (e.g., ld-linux.so on Linux
systems). Instead of passing control to the application, as it would normally do,
the loader loads and runs the dynamic linker. The dynamic linker then finishes the
linking task by performing the following relocations:

. Relocating the text and data of libc.so into some memory segment

. Relocating the text and data of libvector.so into another memory segment

. Relocating any references in prog2l to symbols defined by libc.so and
libvector.so
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Finally, the dynamic linker passes control to the application. From this point on,
the locations of the shared libraries are fixed and do not change during execution
of the program.

7.11 Loading and Linking Shared Libraries from Applications

Up to this point, we have discussed the scenario in which the dynamic linker loads
and links shared libraries when an application is loaded, just before it executes.
However, it is also possible for an application to request the dynamic linker to
load and link arbitrary shared libraries while the application is running, without
having to link in the applications against those libraries at compile time.

Dynamic linking is a powerful and useful technique. Here are some examples
in the real world:

. Distributing software. Developers of Microsoft Windows applications fre-
quently use shared libraries to distribute software updates. They generate
a new copy of a shared library, which users can then download and use as a
replacement for the current version. The next time they run their application,
it will automatically link and load the new shared library.

. Building high-performance Web servers.Many Web servers generate dynamic
content, such as personalized Web pages, account balances, and banner ads.
Early Web servers generated dynamic content by using fork and execve
to create a child process and run a “CGI program” in the context of the
child. However, modern high-performance Web servers can generate dynamic
content using a more efficient and sophisticated approach based on dynamic
linking.

The idea is to package each function that generates dynamic content in
a shared library. When a request arrives from a Web browser, the server
dynamically loads and links the appropriate function and then calls it directly,
as opposed to using fork and execve to run the function in the context of a
child process. The function remains cached in the server’s address space, so
subsequent requests can be handled at the cost of a simple function call. This
can have a significant impact on the throughput of a busy site. Further, existing
functions can be updated and new functions can be added at run time, without
stopping the server.

Linux systems provide a simple interface to the dynamic linker that allows
application programs to load and link shared libraries at run time.

#include <dlfcn.h>

void *dlopen(const char *filename, int flag);

Returns: pointer to handle if OK, NULL on error
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The dlopen function loads and links the shared library filename. The external
symbols in filename are resolved using libraries previously opened with the RTLD_
GLOBAL flag. If the current executable was compiled with the -rdynamic flag, then
its global symbols are also available for symbol resolution. The flag argument
must include either RTLD_NOW, which tells the linker to resolve references to
external symbols immediately, or the RTLD_LAZY flag, which instructs the linker
to defer symbol resolution until code from the library is executed. Either of these
values can be ored with the RTLD_GLOBAL flag.

#include <dlfcn.h>

void *dlsym(void *handle, char *symbol);

Returns: pointer to symbol if OK, NULL on error

The dlsym function takes a handle to a previously opened shared library and
a symbol name and returns the address of the symbol, if it exists, or NULL
otherwise.

#include <dlfcn.h>

int dlclose (void *handle);

Returns: 0 if OK, −1 on error

The dlclose function unloads the shared library if no other shared libraries are
still using it.

#include <dlfcn.h>

const char *dlerror(void);

Returns: error message if previous call to dlopen, dlsym, or dlclose failed;
NULL if previous call was OK

The dlerror function returns a string describing the most recent error that oc-
curred as a result of calling dlopen, dlsym, or dlclose, or NULL if no error
occurred.

Figure 7.17 shows how we would use this interface to dynamically link our
libvector.so shared library at run time and then invoke its addvec routine. To
compile the program, we would invoke gcc in the following way:

linux> gcc -rdynamic -o prog2r dll.c -ldl
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code/link/dll.c
1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <dlfcn.h>

4

5 int x[2] = {1, 2};

6 int y[2] = {3, 4};

7 int z[2];

8

9 int main()

10 {

11 void *handle;

12 void (*addvec)(int *, int *, int *, int);

13 char *error;

14

15 /* Dynamically load the shared library containing addvec() */

16 handle = dlopen("./libvector.so", RTLD_LAZY);

17 if (!handle) {

18 fprintf(stderr, "%s\n", dlerror());

19 exit(1);

20 }

21

22 /* Get a pointer to the addvec() function we just loaded */

23 addvec = dlsym(handle, "addvec");

24 if ((error = dlerror()) != NULL) {

25 fprintf(stderr, "%s\n", error);

26 exit(1);

27 }

28

29 /* Now we can call addvec() just like any other function */

30 addvec(x, y, z, 2);

31 printf("z = [%d %d]\n", z[0], z[1]);

32

33 /* Unload the shared library */

34 if (dlclose(handle) < 0) {

35 fprintf(stderr, "%s\n", dlerror());

36 exit(1);

37 }

38 return 0;

39 }

code/link/dll.c

Figure 7.17 Example program 3. Dynamically loads and links the shared library
libvector.so at run time.
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Aside Shared libraries and the Java Native Interface

Java defines a standard calling convention called Java Native Interface (JNI) that allows “native” C
and C++ functions to be called from Java programs. The basic idea of JNI is to compile the native C
function, say, foo, into a shared library, say, foo.so. When a running Java program attempts to invoke
function foo, the Java interpreter uses the dlopen interface (or something like it) to dynamically link
and load foo.so and then call foo.

7.12 Position-Independent Code (PIC)

A key purpose of shared libraries is to allow multiple running processes to share
the same library code in memory and thus save precious memory resources. So
how can multiple processes share a single copy of a program? One approach would
be to assign a priori a dedicated chunk of the address space to each shared library,
and then require the loader to always load the shared library at that address.
While straightforward, this approach creates some serious problems. It would
be an inefficient use of the address space because portions of the space would
be allocated even if a process didn’t use the library. It would also be difficult to
manage. We would have to ensure that none of the chunks overlapped. Each time
a library was modified, we would have to make sure that it still fit in its assigned
chunk. If not, then we would have to find a new chunk. And if we created a
new library, we would have to find room for it. Over time, given the hundreds
of libraries and versions of libraries in a system, it would be difficult to keep the
address space from fragmenting into lots of small unused but unusable holes. Even
worse, the assignment of libraries to memory would be different for each system,
thus creating even more management headaches.

To avoid these problems, modern systems compile the code segments of
shared modules so that they can be loaded anywhere in memory without having to
be modified by the linker. With this approach, a single copy of a shared module’s
code segment can be shared by an unlimited number of processes. (Of course, each
process will still get its own copy of the read/write data segment.)

Code that can be loaded without needing any relocations is known as position-
independent code (PIC). Users direct GNU compilation systems to generate PIC
code with the -fpic option to gcc. Shared libraries must always be compiled with
this option.

On x86-64 systems, references to symbols in the same executable object mod-
ule require no special treatment to be PIC. These references can be compiled using
PC-relative addressing and relocated by the static linker when it builds the object
file. However, references to external procedures and global variables that are de-
fined by shared modules require some special techniques, which we describe next.

PIC Data References

Compilers generate PIC references to global variables by exploiting the following
interesting fact: no matter where we load an object module (including shared
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Fixed distance of
0x2008b9 bytes
at run time
between GOT[3]
and addl
instruction     

 

GOT[0]: …
GOT[1]: …
GOT[2]: …
GOT[3]: &addcnt 

 

addvec:
  mov 0x2008b9(%rip),% rax  # %rax=*GOT[3]=&addcnt
  addl $0x1,(%rax)          # addcnt++

Figure 7.18 Using the GOT to reference a global variable. The addvec routine in
libvector.so references addcnt indirectly through the GOT for libvector.so.

object modules) in memory, the data segment is always the same distance from
the code segment. Thus, the distance between any instruction in the code segment
and any variable in the data segment is a run-time constant, independent of the
absolute memory locations of the code and data segments.

Compilers that want to generate PIC references to global variables exploit
this fact by creating a table called the global offset table (GOT) at the beginning
of the data segment. The GOT contains an 8-byte entry for each global data
object (procedure or global variable) that is referenced by the object module.
The compiler also generates a relocation record for each entry in the GOT. At
load time, the dynamic linker relocates each GOT entry so that it contains the
absolute address of the object. Each object module that references global objects
has its own GOT.

Figure 7.18 shows the GOT from our example libvector.so shared module.
The addvec routine loads the address of the global variable addcnt indirectly via
GOT[3] and then increments addcnt in memory. The key idea here is that the offset
in the PC-relative reference to GOT[3] is a run-time constant.

Sinceaddcnt is defined by thelibvector.somodule, the compiler could have
exploited the constant distance between the code and data segments by generating
a direct PC-relative reference to addcnt and adding a relocation for the linker
to resolve when it builds the shared module. However, if addcnt were defined
by another shared module, then the indirect access through the GOT would be
necessary. In this case, the compiler has chosen to use the most general solution,
the GOT, for all references.

PIC Function Calls

Suppose that a program calls a function that is defined by a shared library. The
compiler has no way of predicting the run-time address of the function, since
the shared module that defines it could be loaded anywhere at run time. The
normal approach would be to generate a relocation record for the reference, which
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the dynamic linker could then resolve when the program was loaded. However,
this approach would not be PIC, since it would require the linker to modify the
code segment of the calling module. GNU compilation systems solve this problem
using an interesting technique, called lazy binding, that defers the binding of each
procedure address until the first time the procedure is called.

The motivation for lazy binding is that a typical application program will
call only a handful of the hundreds or thousands of functions exported by a
shared library such as libc.so. By deferring the resolution of a function’s address
until it is actually called, the dynamic linker can avoid hundreds or thousands
of unnecessary relocations at load time. There is a nontrivial run-time overhead
the first time the function is called, but each call thereafter costs only a single
instruction and a memory reference for the indirection.

Lazy binding is implemented with a compact yet somewhat complex interac-
tion between two data structures: the GOT and the procedure linkage table (PLT).
If an object module calls any functions that are defined in shared libraries, then it
has its own GOT and PLT. The GOT is part of the data segment. The PLT is part
of the code segment.

Figure 7.19 shows how the PLT and GOT work together to resolve the address
of a function at run time. First, let’s examine the contents of each of these tables.

Procedure linkage table (PLT). The PLT is an array of 16-byte code entries.
PLT[0] is a special entry that jumps into the dynamic linker. Each shared
library function called by the executable has its own PLT entry. Each of
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Figure 7.19 Using the PLT and GOT to call external functions. The dynamic linker resolves the address of
addvec the first time it is called.
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these entries is responsible for invoking a specific function. PLT[1] (not
shown here) invokes the system startup function (__libc_start_main),
which initializes the execution environment, calls the main function, and
handles its return value. Entries starting at PLT[2] invoke functions called
by the user code. In our example, PLT[2] invokes addvec and PLT[3] (not
shown) invokes printf.

Global offset table (GOT). As we have seen, the GOT is an array of 8-byte
address entries. When used in conjunction with the PLT, GOT[0] and
GOT[1] contain information that the dynamic linker uses when it resolves
function addresses. GOT[2] is the entry point for the dynamic linker in
the ld-linux.so module. Each of the remaining entries corresponds to
a called function whose address needs to be resolved at run time. Each
has a matching PLT entry. For example, GOT[4] and PLT[2] correspond
to addvec. Initially, each GOT entry points to the second instruction in
the corresponding PLT entry.

Figure 7.19(a) shows how the GOT and PLT work together to lazily resolve
the run-time address of function addvec the first time it is called:

Step 1. Instead of directly calling addvec, the program calls into PLT[2], which
is the PLT entry for addvec.

Step 2. The first PLT instruction does an indirect jump through GOT[4]. Since
each GOT entry initially points to the second instruction in its correspond-
ing PLT entry, the indirect jump simply transfers control back to the next
instruction in PLT[2].

Step 3. After pushing an ID for addvec (0x1) onto the stack, PLT[2] jumps to
PLT[0].

Step 4. PLT[0] pushes an argument for the dynamic linker indirectly through
GOT[1] and then jumps into the dynamic linker indirectly throughGOT[2].
The dynamic linker uses the two stack entries to determine the run-
time location of addvec, overwrites GOT[4] with this address, and passes
control to addvec.

Figure 7.19(b) shows the control flow for any subsequent invocations of
addvec:

Step 1. Control passes to PLT[2] as before.

Step 2. However, this time the indirect jump through GOT[4] transfers control
directly to addvec.

7.13 Library Interpositioning

Linux linkers support a powerful technique, called library interpositioning, that
allows you to intercept calls to shared library functions and execute your own code
instead. Using interpositioning, you could trace the number of times a particular
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library function is called, validate and trace its input and output values, or even
replace it with a completely different implementation.

Here’s the basic idea: Given some target function to be interposed on, you
create a wrapper function whose prototype is identical to the target function. Using
some particular interpositioning mechanism, you then trick the system into calling
the wrapper function instead of the target function. The wrapper function typically
executes its own logic, then calls the target function and passes its return value
back to the caller.

Interpositioning can occur at compile time, link time, or run time as the
program is being loaded and executed. To explore these different mechanisms,
we will use the example program in Figure 7.20(a) as a running example. It calls
the malloc and free functions from the C standard library (libc.so). The call to
malloc allocates a block of 32 bytes from the heap and returns a pointer to the
block. The call to free gives the block back to the heap, for use by subsequent
calls to malloc. Our goal is to use interpositioning to trace the calls to malloc and
free as the program runs.

7.13.1 Compile-Time Interpositioning

Figure 7.20 shows how to use the C preprocessor to interpose at compile time.
Each wrapper function in mymalloc.c (Figure 7.20(c)) calls the target function,
prints a trace, and returns. The localmalloc.hheader file (Figure 7.20(b)) instructs
the preprocessor to replace each call to a target function with a call to its wrapper.
Here is how to compile and link the program:

linux> gcc -DCOMPILETIME -c mymalloc.c

linux> gcc -I. -o intc int.c mymalloc.o

The interpositioning happens because of the -I. argument, which tells the C
preprocessor to look for malloc.h in the current directory before looking in the
usual system directories. Notice that the wrappers in mymalloc.c are compiled
with the standard malloc.h header file.

Running the program gives the following trace:

linux> ./intc

malloc(32)=0x9ee010

free(0x9ee010)

7.13.2 Link-Time Interpositioning

The Linux static linker supports link-time interpositioning with the --wrap f flag.
This flag tells the linker to resolve references to symbol f as __wrap_f (two
underscores for the prefix), and to resolve references to symbol __real_f
(two underscores for the prefix) as f. Figure 7.21 shows the wrappers for our
example program.

Here is how to compile the source files into relocatable object files:

linux> gcc -DLINKTIME -c mymalloc.c

linux> gcc -c int.c
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(a) Example program int.c

code/link/interpose/int.c
1 #include <stdio.h>

2 #include <malloc.h>

3
4 int main()

5 {

6 int *p = malloc(32);

7 free(p);

8 return(0);

9 }

code/link/interpose/int.c

(b) Local malloc.h file
code/link/interpose/malloc.h

1 #define malloc(size) mymalloc(size)

2 #define free(ptr) myfree(ptr)

3
4 void *mymalloc(size_t size);

5 void myfree(void *ptr);

code/link/interpose/malloc.h

(c) Wrapper functions in mymalloc.c

code/link/interpose/mymalloc.c
1 #ifdef COMPILETIME

2 #include <stdio.h>

3 #include <malloc.h>

4
5 /* malloc wrapper function */

6 void *mymalloc(size_t size)

7 {

8 void *ptr = malloc(size);

9 printf("malloc(%d)=%p\n",

10 (int)size, ptr);

11 return ptr;

12 }

13
14 /* free wrapper function */

15 void myfree(void *ptr)

16 {

17 free(ptr);

18 printf("free(%p)\n", ptr);

19 }

20 #endif

code/link/interpose/mymalloc.c

Figure 7.20 Compile-time interpositioning with the C preprocessor.
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code/link/interpose/mymalloc.c
1 #ifdef LINKTIME

2 #include <stdio.h>

3

4 void *__real_malloc(size_t size);

5 void __real_free(void *ptr);

6

7 /* malloc wrapper function */

8 void *__wrap_malloc(size_t size)

9 {

10 void *ptr = __real_malloc(size); /* Call libc malloc */

11 printf("malloc(%d) = %p\n", (int)size, ptr);

12 return ptr;

13 }

14

15 /* free wrapper function */

16 void __wrap_free(void *ptr)

17 {

18 __real_free(ptr); /* Call libc free */

19 printf("free(%p)\n", ptr);

20 }

21 #endif

code/link/interpose/mymalloc.c

Figure 7.21 Link-time interpositioning with the --wrap flag.

And here is how to link the object files into an executable:

linux> gcc -Wl,--wrap,malloc -Wl,--wrap,free -o intl int.o mymalloc.o

The -Wl,option flag passes option to the linker. Each comma in option is
replaced with a space. So -Wl,--wrap,mallocpasses --wrap malloc to the linker,
and similarly for -Wl,--wrap,free.

Running the program gives the following trace:

linux> ./intl

malloc(32) = 0x18cf010

free(0x18cf010)

7.13.3 Run-Time Interpositioning

Compile-time interpositioning requires access to a program’s source files. Link-
time interpositioning requires access to its relocatable object files. However, there
is a mechanism for interpositioning at run time that requires access only to the
executable object file. This fascinating mechanism is based on the dynamic linker’s
LD_PRELOAD environment variable.
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If the LD_PRELOAD environment variable is set to a list of shared library
pathnames (separated by spaces or colons), then when you load and execute a
program, the dynamic linker (ld-linux.so) will search the LD_PRELOAD libraries
first, before any other shared libraries, when it resolves undefined references. With
this mechanism, you can interpose on any function in any shared library, including
libc.so, when you load and execute any executable.

Figure 7.22 shows the wrappers for malloc and free. In each wrapper, the
call to dlsym returns the pointer to the target libc function. The wrapper then
calls the target function, prints a trace, and returns.

Here is how to build the shared library that contains the wrapper functions:

linux> gcc -DRUNTIME -shared -fpic -o mymalloc.so mymalloc.c -ldl

Here is how to compile the main program:

linux> gcc -o intr int.c

Here is how to run the program from the bash shell:3

linux> LD_PRELOAD="./mymalloc.so" ./intr

malloc(32) = 0x1bf7010

free(0x1bf7010)

And here is how to run it from the csh or tcsh shells:

linux> (setenv LD_PRELOAD "./mymalloc.so"; ./intr; unsetenv LD_PRELOAD)

malloc(32) = 0x2157010

free(0x2157010)

Notice that you can use LD_PRELOAD to interpose on the library calls of any
executable program!

linux> LD_PRELOAD="./mymalloc.so" /usr/bin/uptime

malloc(568) = 0x21bb010

free(0x21bb010)

malloc(15) = 0x21bb010

malloc(568) = 0x21bb030

malloc(2255) = 0x21bb270

free(0x21bb030)

malloc(20) = 0x21bb030

malloc(20) = 0x21bb050

malloc(20) = 0x21bb070

malloc(20) = 0x21bb090

malloc(20) = 0x21bb0b0

malloc(384) = 0x21bb0d0

20:47:36 up 85 days, 6:04, 1 user, load average: 0.10, 0.04, 0.05

3. If you don’t know what shell you are running, type printenv SHELL at the command line.
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code/link/interpose/mymalloc.c
1 #ifdef RUNTIME

2 #define _GNU_SOURCE

3 #include <stdio.h>

4 #include <stdlib.h>

5 #include <dlfcn.h>

6

7 /* malloc wrapper function */

8 void *malloc(size_t size)

9 {

10 void *(*mallocp)(size_t size);

11 char *error;

12

13 mallocp = dlsym(RTLD_NEXT, "malloc"); /* Get address of libc malloc */

14 if ((error = dlerror()) != NULL) {

15 fputs(error, stderr);

16 exit(1);

17 }

18 char *ptr = mallocp(size); /* Call libc malloc */

19 printf("malloc(%d) = %p\n", (int)size, ptr);

20 return ptr;

21 }

22

23 /* free wrapper function */

24 void free(void *ptr)

25 {

26 void (*freep)(void *) = NULL;

27 char *error;

28

29 if (!ptr)

30 return;

31

32 freep = dlsym(RTLD_NEXT, "free"); /* Get address of libc free */

33 if ((error = dlerror()) != NULL) {

34 fputs(error, stderr);

35 exit(1);

36 }

37 freep(ptr); /* Call libc free */

38 printf("free(%p)\n", ptr);

39 }

40 #endif

code/link/interpose/mymalloc.c

Figure 7.22 Run-time interpositioning with LD_PRELOAD.
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7.14 Tools for Manipulating Object Files

There are a number of tools available on Linux systems to help you understand
and manipulate object files. In particular, the GNU binutils package is especially
helpful and runs on every Linux platform.

ar. Creates static libraries, and inserts, deletes, lists, and extracts members.

strings. Lists all of the printable strings contained in an object file.

strip. Deletes symbol table information from an object file.

nm. Lists the symbols defined in the symbol table of an object file.

size. Lists the names and sizes of the sections in an object file.

readelf. Displays the complete structure of an object file, including all of the
information encoded in the ELF header. Subsumes the functionality of
size and nm.

objdump. The mother of all binary tools. Can display all of the information in an
object file. Its most useful function is disassembling the binary instructions
in the .text section.

Linux systems also provide the ldd program for manipulating shared libraries:

ldd: Lists the shared libraries that an executable needs at run time.

7.15 Summary

Linking can be performed at compile time by static linkers and at load time and run
time by dynamic linkers. Linkers manipulate binary files called object files, which
come in three different forms: relocatable, executable, and shared. Relocatable
object files are combined by static linkers into an executable object file that can
be loaded into memory and executed. Shared object files (shared libraries) are
linked and loaded by dynamic linkers at run time, either implicitly when the calling
program is loaded and begins executing, or on demand, when the program calls
functions from the dlopen library.

The two main tasks of linkers are symbol resolution, where each global symbol
in an object file is bound to a unique definition, and relocation, where the ultimate
memory address for each symbol is determined and where references to those
objects are modified.

Static linkers are invoked by compiler drivers such as gcc. They combine
multiple relocatable object files into a single executable object file. Multiple object
files can define the same symbol, and the rules that linkers use for silently resolving
these multiple definitions can introduce subtle bugs in user programs.

Multiple object files can be concatenated in a single static library. Linkers
use libraries to resolve symbol references in other object modules. The left-to-
right sequential scan that many linkers use to resolve symbol references is another
source of confusing link-time errors.
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Loaders map the contents of executable files into memory and run the pro-
gram. Linkers can also produce partially linked executable object files with un-
resolved references to the routines and data defined in a shared library. At load
time, the loader maps the partially linked executable into memory and then calls
a dynamic linker, which completes the linking task by loading the shared library
and relocating the references in the program.

Shared libraries that are compiled as position-independent code can be loaded
anywhere and shared at run time by multiple processes. Applications can also use
the dynamic linker at run time in order to load, link, and access the functions and
data in shared libraries.

Bibliographic Notes

Linking is poorly documented in the computer systems literature. Since it lies at
the intersection of compilers, computer architecture, and operating systems, link-
ing requires an understanding of code generation, machine-language program-
ming, program instantiation, and virtual memory. It does not fit neatly into any of
the usual computer systems specialties and thus is not well covered by the classic
texts in these areas. However, Levine’s monograph provides a good general ref-
erence on the subject [69]. The original IA32 specifications for ELF and DWARF
(a specification for the contents of the .debug and .line sections) are described
in [54]. The x86-64 extensions to the ELF file format are described in [36]. The
x86-64 application binary interface (ABI) describes the conventions for compil-
ing, linking, and running x86-64 programs, including the rules for relocation and
position-independent code [77].

Homework Problems

7.6 !
This problem concerns the m.o module from Figure 7.5 and the following version
of the swap.c function that counts the number of times it has been called:

1 extern int buf[];

2

3 int *bufp0 = &buf[0];

4 static int *bufp1;

5

6 static void incr()

7 {

8 static int count=0;

9

10 count++;

11 }

12

13 void swap()

14 {
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15 int temp;

16

17 incr();

18 bufp1 = &buf[1];

19 temp = *bufp0;

20 *bufp0 = *bufp1;

21 *bufp1 = temp;

22 }

For each symbol that is defined and referenced in swap.o, indicate if it will
have a symbol table entry in the .symtab section in module swap.o. If so, indicate
the module that defines the symbol (swap.oor m.o), the symbol type (local, global,
or extern), and the section (.text, .data, or .bss) it occupies in that module.

Symbol swap.o .symtab entry? Symbol type Module where defined Section

buf

bufp0

bufp1

swap

temp

incr

count

7.7 !
Without changing any variable names, modify bar5.c on page 719 so that foo5.c
prints the correct values of x and y (i.e., the hex representations of integers 15213
and 15212).

7.8 !
In this problem, let REF(x.i) → DEF(x.k) denote that the linker will associate an
arbitrary reference to symbol x in module i to the definition of x in module k. For
each example below, use this notation to indicate how the linker would resolve
references to the multiply-defined symbol in each module. If there is a link-time
error (rule 1), write “error”. If the linker arbitrarily chooses one of the definitions
(rule 3), write “unknown”.

A. /* Module 1 */ /* Module 2 */

int main() static int main=1[

{ int p2()

} {

}

(a) REF(main.1) → DEF( . )

(b) REF(main.2) → DEF( . )
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B. /* Module 1 */ /* Module 2 */

int x; double x;

void main() int p2()

{ {

} }

(a) REF(x.1) → DEF( . )

(b) REF(x.2) → DEF( . )

C. /* Module 1 */ /* Module 2 */

int x=1; double x=1.0;

void main() int p2()

{ {

} }

(a) REF(x.1) → DEF( . )

(b) REF(x.2) → DEF( . )

7.9 !
Consider the following program, which consists of two object modules:

1 /* foo6.c */

2 void p2(void);

3

4 int main()

5 {

6 p2();

7 return 0;

8 }

1 /* bar6.c */

2 #include <stdio.h>

3

4 char main;

5

6 void p2()

7 {

8 printf("0x%x\n", main);

9 }

When this program is compiled and executed on an x86-64 Linux system, it
prints the string 0x48\n and terminates normally, even though function p2 never
initializes variable main. Can you explain this?

7.10 !!
Let a and b denote object modules or static libraries in the current directory, and
let a→b denote that a depends on b, in the sense that b defines a symbol that is
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referenced by a. For each of the following scenarios, show the minimal command
line (i.e., one with the least number of object file and library arguments) that will
allow the static linker to resolve all symbol references:

A. p.o → libx.a → p.o

B. p.o → libx.a → liby.a and liby.a → libx.a

C. p.o → libx.a → liby.a → libz.a and liby.a → libx.a → libz.a

7.11 !!
The program header in Figure 7.14 indicates that the data segment occupies 0x230
bytes in memory. However, only the first 0x228 bytes of these come from the
sections of the executable file. What causes this discrepancy?

7.12 !!
Consider the call to function swap in object file m.o (Problem 7.6).

9: e8 00 00 00 00 callq e <main+0xe> swap()

with the following relocation entry:

r.offset = 0xa

r.symbol = swap

r.type = R_X86_64_PC32

r.addend = -4

A. Suppose that the linker relocates .text in m.o to address 0x4004e0 and swap
to address 0x4004f8. Then what is the value of the relocated reference to
swap in the callq instruction?

B. Suppose that the linker relocates .text in m.o to address 0x4004d0 and swap
to address 0x400500. Then what is the value of the relocated reference to
swap in the callq instruction?

7.13 !!
Performing the following tasks will help you become more familiar with the
various tools for manipulating object files.

A. How many object files are contained in the versions of libc.a and libm.a
on your system?

B. Does gcc -Og produce different executable code than gcc -Og -g?

C. What shared libraries does the gcc driver on your system use?

Solutions to Practice Problems

Solution to Problem 7.1 (page 714)
The purpose of this problem is to help you understand the relationship between
linker symbols and C variables and functions. Notice that the C local variable temp
does not have a symbol table entry.
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Symbol .symtab entry? Symbol type Module where defined Section

buf Yes extern m.o .data

bufp0 Yes global swap.o .data

bufp1 Yes global swap.o COMMON
swap Yes global swap.o .text

temp No — — —

Solution to Problem 7.2 (page 720)
This is a simple drill that checks your understanding of the rules that a Unix linker
uses when it resolves global symbols that are defined in more than one module.
Understanding these rules can help you avoid some nasty programming bugs.

A. The linker chooses the strong symbol defined in module 1 over the weak
symbol defined in module 2 (rule 2):
(a) REF(main.1) → DEF(main.1)

(b) REF(main.2) → DEF(main.1)

B. This is an error, because each module defines a strong symbol main (rule 1).

C. The linker chooses the strong symbol defined in module 2 over the weak
symbol defined in module 1 (rule 2):
(a) REF(x.1) → DEF(x.2)

(b) REF(x.2) → DEF(x.2)

Solution to Problem 7.3 (page 725)
Placing static libraries in the wrong order on the command line is a common source
of linker errors that confuses many programmers. However, once you understand
how linkers use static libraries to resolve references, it’s pretty straightforward.
This little drill checks your understanding of this idea:

A. linux> gcc p.o libx.a

B. linux> gcc p.o libx.a liby.a

C. linux> gcc p.o libx.a liby.a libx.a

Solution to Problem 7.4 (page 730)
This problem concerns the disassembly listing in Figure 7.12(a). Our purpose
here is to give you some practice reading disassembly listings and to check your
understanding of PC-relative addressing.

A. The hex address of the relocated reference in line 5 is 0x4004df.

B. The hex value of the relocated reference in line 5 is 0x5. Remember that
the disassembly listing shows the value of the reference in little-endian byte
order.

Solution to Problem 7.5 (page 731)
This problem tests your understanding of how the linker relocates PC-relative
references. You were given that
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ADDR(s) = ADDR(.text) = 0x4004d0

and

ADDR(r.symbol) = ADDR(swap) = 0x4004e8

Using the algorithm in Figure 7.10, the linker first computes the run-time
address of the reference:

refaddr = ADDR(s) + r.offset

= 0x4004d0 + 0xa

= 0x4004da

It then updates the reference:

*refptr = (unsigned) (ADDR(r.symbol) + r.addend - refaddr)

= (unsigned) (0x4004e8 + (-4) - 0x4004da)

= (unsigned) (0xa)

Thus, in the resulting executable object file, the PC-relative reference to swap has
a value of 0xa:

4004d9: e8 0a 00 00 00 callq 4004e8 <swap>
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