数学
三角函数的变换和解三角形
已知 \(2\sin^2 A + \sin^2 B = 2 \sin^2 C\),求\(\frac{1}{\tan A}+\frac{1}{\tan B}+\frac{1}{\tan C}\) 的最小值。
很好的一道题。可以大概了解到需要用均值不等式解决最后的最小值,便不再关心正切的具体值,而去关心用一个角的正切来解决。考虑变形:
\[ \begin{gather}
2a^2+b^2 = 2c^2 \tag{1} \\
\text{考虑余弦定理:} \\
2ab \cos C = a^2+b^2-c^2 \tag{2} \\
\text{联立(1)(2)式:} \\
2ab \cos C = c^2 – a^2 \to 4ab \cos C = 2c^2 – 2a^2 \\
\text{带入(1)式:} \\
4ab \cos C = b^2 \to 4a \cos C = b \\
\text{考虑正弦定理转换:} \\
4 \sin A \cos C = \sin A \cos C + \sin C \cos A \\
3 \sin A \cos C = \sin C \sin A \\
3\tan A = \tan B \\
\end{gather} \]
之后裸的带入就行了,最后注意一点就是\(\tan C\)的转换用正切和公式和诱导公式变个型就可以了:
\[\begin{aligned}
\tan C &= \tan (\pi – A – B) = \tan (- A – B) = -\tan (A + B) \\
&= \frac{\tan A + \tan B}{\tan A \tan B – 1} \\
&= \frac{4 \tan A}{3 \tan^2 A – 1}
\end{aligned}
\\
\begin{aligned}
\text{原式} &= \frac{1}{\tan A} + \frac{1}{\tan B} + \frac{1}{\tan C} \\
&= \frac{4}{3 \tan A} + \frac{3 \tan^2 A – 1}{4 \tan A} \\
&= \frac{16 + 9 \tan^2 A – 3}{12 \tan A} \\
&= \frac{13}{12 \tan A} + \frac{3 \tan A}{4} \geq \frac{\sqrt{13}}{2}
\end{aligned}\]