主要思路
硬推就完事了:
\[ \begin{aligned} g(n) &= \sum_{i = 1}^n \frac{n}{\gcd(i, n)} = n \sum_{d|n} \frac{1}{d} \sum_{i = 1}^n [\gcd(n, i) = d] \\ &= n \sum_{d|n} \frac{1}{d} \sum_{i = 1}^{\frac{n}{d}} [\gcd(\frac{n}{d}, i) = 1] = \sum_{d|n} \frac{n}{d} \varphi(\frac{n}{d}) = \sum_{d|n} d \varphi(d) \\ &= \sum_{d|n} d^2 \prod_{p_i} (1 – \frac{1}{p_i}) = \prod_{p_i} (1 + \sum_{g = 1}^{e_i} p_i^{2g} (1 – \frac{1}{p_i}) ) \\ &= \prod_{p_i} (1 + \sum_{g = 1}^{e_i} p_i^{2g} – \sum_{g = 1}^{e_i} p_i^{2g – 1}) = \prod_{p_i} (1 + \sum_{g = 1}^{e_i} p_i^{2g} – \frac{ \sum_{g = 1}^{e_i} p_i^{2g} }{p_i} ) \\ &= \prod_{p_i} (1 + (1 – \frac{1}{p_i}) (\sum_{g = 1}^{e_i} p_i^{2g}) ) = \prod_{p_i} (1 + (1 – \frac{1}{p_i}) \frac{p_i^2 (1 – p_i^{2e_i})}{1 – p_i^2}) \\ &= \prod_{p_i} (1 + \frac{(p_i – 1)}{p_i} \frac{p_i^2 (1 – p_i^{2e_i})}{(1 – p_i)(1 + p_i)} ) \\ &= \prod_{p_i} (1 – \frac{p_i (1 – p_i^{2e_i})}{1 + p_i} ) = \prod_{p_i} \frac{1 + p_i – p_i + p_i^{2e_i + 1}}{1 + p_i} \\ &= \prod_{p_i} \frac{p_i^{2e_i + 1} + 1}{1 + p_i} \end{aligned} \]
最后上下除一下,得到:
\[ \frac{f(n)}{g(n)} = \prod_{p_i} (1 + p_i) \]
继续阅读“「QuestOJ」Product – 题解”