主要思路
首先对于 \(d = 1\),答案就是 \(k^n\)。
对于 \(d = 2\),其实发现可以用生成函数来直接乘:\( A(x) = \sum_{i = 0}^\infty \frac{1}{i!} x^i [2 | i] \),那么答案就是 \( A^k(x)[x^n] \)。发现可以变通奇偶性,所以 \(A(x) = \frac{e^x + e^{-x}}{2}\),然后试着二项式展开:
Personal Blog
首先对于 \(d = 1\),答案就是 \(k^n\)。
对于 \(d = 2\),其实发现可以用生成函数来直接乘:\( A(x) = \sum_{i = 0}^\infty \frac{1}{i!} x^i [2 | i] \),那么答案就是 \( A^k(x)[x^n] \)。发现可以变通奇偶性,所以 \(A(x) = \frac{e^x + e^{-x}}{2}\),然后试着二项式展开: