「Fortuna OJ」Jul 11th – Group B 解题报告

A – 照片

这道题是一道很考察思维的题目,我在这里介绍 DP 的做法。

我们考虑 DP。大概的方程可以写成:

\[ dp[i] = max\{ dp[j], j \in S_i \} + 1 \]

其中,\(dp[i]\)代表\([1, i]\)之间最多的斑点奶牛数量,然后\(S_i\)就是我们可以转移来的区间。我们可以提前处理好每一个点对应的\(lft_{S_i}, rig_{S_i}\),也就是每一个点集合的左右端点。这个区间满足一个根本的条件:这个区间是点\(i\)左边最近的、不包含\(i\)的集合。我们肯定可以从这一段区间搞出最大的答案。预处理的时候先默认\(rgt[i] = i – 1\),最后做个小 DP 更新数据即可。

Continue reading →

BZOJ 3456:城市规划题解

题面

注意:这道题在 BZOJ 上是权限题,我是在 JZOJ 上做的。

刚刚解决完电力网络的问题,阿狸又被领导的任务给难住了。

刚才说过, 阿狸的国家有\(n\)个城市,现在国家需要在某些城市对之间建立一些贸易路线, 使得整个国家的任意两个城市都直接或间接的连通。

为了省钱,每两个城市之间最多只能有一条直接的贸易路径。对于两个建立路线的方案, 如果存在一个城市对,在两个方案中是否建立路线不一样,那么这两个方案就是不同的,否则就是相同的。现在你需要求出一共有多少不同的方案。

好了,这就是困扰阿狸的问题。换句话说,你需要求出\(n\)个点的简单(无重边无自环)无向连通图数目。

由于这个数字可能非常大,你只需要输出方案数 mod 1004535809(479 * 2 ^21 + 1) 即可。

Continue reading →

多项式求逆

前置技能

FFT、NTT、多项式乘法。

原理推理

现在我们有一个这样的式子:

\[ A(x)B(x) \equiv C(x) \ (mod \ x^n) \]

现在我们已知\(B(x), C(x)\)的信息,而我们计算答案的时候需要用\(A(x)\)进行运算。这个时候,我们需要求出\(B(x)\)的逆元。多项式求逆元,我们一般是用倍增的方式来求解。假如我们有\(B(x)\)在模\(x^{\lceil \frac{x}{2} \rceil}\)意义下的逆元\(D(x)\):

Continue reading →

多项式乘法 & 快速傅立叶变换

简述

在信息学竞赛中,多项式乘法出现得非常的多,朴素算法的时间复杂度为\(O(n^2)\),成为了许多毒瘤出题人卡指数的地方。所以,用快速傅立叶变换(FFT, Fast Fourier Transform)来优化多项式乘法是很有必要的。接下来,我会由浅入深地来介绍这两者与其之间的关系。

Continue reading →

「Fortuna OJ」Jul 8th – Group B 解题报告

今天这几题咋就那么毒瘤呢?

A – String

其实这道题考场上应该能做出来的,是一道很简单的计数问题。在考场上一看到字符串就懵了,不知道为什么我对字符串的字典序有阴影,现在看来就是一道傻逼题。

考虑这样计数:

  1. 枚举一个\(i\),考虑前\(i-1\)个字符与\(T\)串相同,然后第\(i\)个字符小于\(T[i]\),这样可以保证后面怎么放置字母都能满足要求。
  2. 在枚举了\(i\)的情况下,枚举字符\(ch\),范围在\([a, T[i])\),考虑以下两种情况对答案的贡献:
    1. 如果\(ch = S[i]\),那么后面需要变动的字符个数为\(k\)个,对答案的贡献:\[ {n – i \choose k} 25^{k} \]
    2. 如果不等于,那么后面需要变动的字符个数为\(k-1\)个,因为本位占了一个;对答案的贡献:\[ {n – i \choose k – 1} 25^{k – 1} \]
  3. 贡献之后,如果本位\(T[i] \neq S[i]\),那么把\(k–\),代表多固定了一个不同的字符。

Continue reading →