「2018泉州国庆集训#3」 – 解题报告

A – 人类基因组

这套题全都是暴力出奇迹系列。

我们枚举一个端点,然后判断以这个点为右端点是否能计入答案。我们把序列做个前缀和\(prefix[]\),然后发现计入答案的条件当且仅当\(prefix[i – n]\)小于等于\([i – n + 1, i]\)的最小值。这样可以保证所有的前缀都能为非负数。

然后用 sb 线段树搞下就行了,太特么傻逼了。

Continue reading →

「Fortuna OJ」6352 – 给(ca)题解

主要思路

首先,叶子结点为\(k\)时,整个完整的二叉树存在\(2k – 1\)个节点。我们设置一个 DP 来进行计数。

考虑设置状态\(dp[i][j]\)为当前树已有\(i\)个节点,且有当前加入的节点到根的路径有\(j\)单位长度。考虑以下转移:

\[ dp[i + 1][j + 1] += dp[i][j] \\ dp[i + 1][j – 1] += dp[i][j] \]

向新的节点加入统计数据:多了一个叶子结点,要么向左走,加深当前的路径;要么补上最后一个向左走的右节点。

然后就可以写代码了。

Continue reading →

「Codeforces 1206D」Shortest Path 题解

主要思路

刚开始以为是搞\(\log n\)个基底点,然后双向边上面做事情,最后发现找图上最小环的复杂度非常的高。所以 GG。

正解考虑把问题的规模进行缩小:也就是把一些答案预先特判掉。比如说,如果某一个位上有超过三个点连接,那么环的大小就可以被确定为是\(3\),也就是最小的可能。考虑超出\(3 \times 60\)这么多就可以直接判定答案为\(3\)。

再考虑剩下的情况。此时,\(n\)已经缩小了很多,所以我们暴力建图,用 Floyd 跑最小环即可。

Continue reading →

「Codeforces 1204E」Natasha, Sasha and the Prefix Sums 题解

主要思路与推导

这道题是一道好题。

我们可以直接暴力 DP,考虑状态\(dp[i][j]\)为\(i\)个\(1\)与\(j\)个\(-1\)的答案。那么,我们可以从少一个\(1\)的情况和少一个\(-1\)的情况进行转移:

  • 对于少一个\(1\)的情况,也就是\(dp[i – 1][j]\),我们把\(1\)放在这样序列的前面,这样可以让所有序列的最大前缀和都加一,所以贡献就是\(dp[i – 1][j] + {i + j – 1 \choose j}\)。
  • 对于少一个\(-1\)的情况,也就是\(dp[i][j – 1]\),我们把\(-1\)放在这样的区间前面,会产生两种情况:对于贡献大于\(0\)的序列,\(-1\)的贡献就是这样的序列的个数;如果贡献本来就小于等于\(0\),那么就无贡献。所以我们还需要额外计算一个无贡献的序列的个数并加回来。

Continue reading →