01背包的前 k 优解问题

简述

最近准备开始复习背包,看《背包九讲》之前正好随机到了这道题,所以来做一个简单的总结。

原理

首先回忆 01 背包的 DP 递推式:

\[ dp[j] = \max\{ dp[j], dp[j – weight_i] + value_i \} \]

我们可以尝试加一维,记录为第\(x\)优解:\(dp[x][j]\)。如何从之前的更优解合并为次优解是这道题的难点。首先我们发现,对于每一个\(j\),\(\{ dp[1][j], dp[2][j], dp[3][j], \dots \}\)是单调下降的。那么,我们如果要合并出一个新的单调下降序列,我们就可以使用归并排序的合并方式:只不过不是在两个序列上,而是在两种决策中选择,我们可以把选择第\(i\)个的和不选择的答案虚拟成两个长度为\(k\)的序列,然后用归并的方式合并。

代码

// P1858.cpp
#include <bits/stdc++.h>

using namespace std;

const int MAX_N = 5050;

int dp[55][MAX_N], k, m, n, wi[MAX_N], vi[MAX_N], tmp[MAX_N];

int main()
{
    scanf("%d%d%d", &k, &m, &n);
    for (int i = 1; i <= n; i++)
        scanf("%d%d", &wi[i], &vi[i]);
    memset(dp, 128, sizeof(dp));
    dp[1][0] = 0;
    for (int i = 1; i <= n; i++)
        for (int j = m; j >= wi[i]; j--)
        {
            int ptr1 = 1, ptr2 = 1, ptr = 0;
            while (ptr <= k)
                if (dp[ptr1][j] > dp[ptr2][j - wi[i]] + vi[i])
                    tmp[++ptr] = dp[ptr1++][j];
                else
                    tmp[++ptr] = dp[ptr2++][j - wi[i]] + vi[i];
            for (int pt = 1; pt <= k; pt++)
                dp[pt][j] = tmp[pt];
        }
    int ans = 0;
    for (int i = 1; i <= k; i++)
        ans += dp[i][m];
    printf("%d", ans);
    return 0;
}

「POI2014」MRO-Ant colony 题解

主要思路

如果你正确理解了题意,那么就不难想到用\(O(n)\)的 DFS 求出每一个叶子结点的上下界(然后我就没想了)。二分区间上的两个端点来获得总长度即可。

Continue reading →

树上启发式合并 | DSU on tree

简述

树的结构让某些数据难以直接快速合并,所以就有了树上启发式合并,一种把合并时间为\(O(n)\)优化成\(O(\log n)\)的神奇方式。如果您先前学习过树链剖分,那么学习树上启发式合并就非常简单了。

Continue reading →

Codeforces 1239A:Ivan the Fool and the Probability Theory 题解

主要思路

首先需要知道一个性质:如果第一行和第一列确定,那么这个方案就已经完全确定了。这个可以用归纳法证明:

证明  如果格子\((i – 1, j)\)、\((i, j – 1)\)和\((i – 1, j – 1)\)的颜色确定,那么显然\((i, j)\)的颜色就能被唯一确定。如果第一行和第一列可以被确定,那么根据上述描述,便可生成一个唯一的方案。

所以欲记录方案的个数,那么就要记录合法的第一行和第一列的方案数。这样我们把问题转换到了长条上。

设置\(dp[i][0/1][0/1]\)为到第\(i\)位是否连续、最后一位填的数字。那么转移非常自然,可以自行推导(确实啊)。

最后答案就是把所有情况加起来,再减去非法的两种情况(也就是左上角的三格同色的情况)。

Continue reading →

「杂题集」- 2019年10月16日

挑战

最后发现就是分块大暴力,要是有更有意思的解法就好了(不过这个信息本来就没有优秀的合并方式,或者用一种二位在线偏序结构倒是可以解决这个问题)。

Continue reading →