主要思路
正好在《组合数学》上看过一个结论:反图形成的连通块的点在原图一定处处连通。证明很简单:考虑点对\((u, v)\),如果点对之间在反图中不连通显然是在原图联通的;如果在反图中连通,有一个不在当前点集的点使得他们连通。所以,我们只需要构建反图,根据「不与本点相连的点都在本连通块内」进行 BFS 即可。
代码
// P3452.cpp
#include <bits/stdc++.h>
using namespace std;
const int MAX_N = 1e5 + 200, MAX_E = 4e6 + 200;
int head[MAX_N], current, n, m;
struct edge
{
int to, nxt;
} edges[MAX_E];
bool vis[MAX_N], ext[MAX_N];
vector<int> pool;
void addpath(int src, int dst)
{
edges[current].to = dst, edges[current].nxt = head[src];
head[src] = current++;
}
int bfs(int x)
{
int tot = 0;
queue<int> q;
q.push(x), ext[x] = true;
while (!q.empty())
{
int u = q.front();
q.pop(), tot++;
vis[u] = true;
for (int i = head[u]; i != -1; i = edges[i].nxt)
ext[edges[i].to] = true;
vector<int> tmp = pool;
pool.clear();
for (int i = 0, siz = tmp.size(); i < siz; i++)
if (ext[tmp[i]])
pool.push_back(tmp[i]);
else
q.push(tmp[i]);
for (int i = head[u]; i != -1; i = edges[i].nxt)
ext[edges[i].to] = false;
}
return tot;
}
int main()
{
memset(head, -1, sizeof(head));
scanf("%d%d", &n, &m);
for (int i = 1, u, v; i <= m; i++)
scanf("%d%d", &u, &v), addpath(u, v), addpath(v, u);
for (int i = 1; i <= n; i++)
pool.push_back(i);
vector<int> ans;
for (int i = 1; i <= n; i++)
if (vis[i] == false)
ans.push_back(bfs(i));
sort(ans.begin(), ans.end());
printf("%d\n", ans.size());
for (int i = 0, siz = ans.size(); i < siz; i++)
printf("%d ", ans[i]);
return 0;
}