主要思路
大概就是要求一个子序列,使得在所有变化中始终长度最长。我们可以考虑分治,讨论变化的点的左右位置,然后用树状数组维护一下即可。
代码
// P4093.cpp #include <bits/stdc++.h> using namespace std; const int MAX_N = 1e5 + 200; int n, m, ai[MAX_N], mx[MAX_N], mn[MAX_N], dp[MAX_N], nodes[MAX_N], idx[MAX_N]; inline int lowbit(int x) { return x & (-x); } void update(int x, int d) { for (; x <= n; x += lowbit(x)) nodes[x] = max(nodes[x], d); } void clear(int x) { for (; x <= n; x += lowbit(x)) nodes[x] = 0; } int query(int x, int ret = 0) { for (; x; x -= lowbit(x)) ret = max(ret, nodes[x]); return ret; } void solve(int l, int r) { if (l == r) return (void)(dp[l] = max(dp[l], 1)); int mid = (l + r) >> 1; solve(l, mid); for (int i = l; i <= r; i++) idx[i] = i; sort(idx + l, idx + mid + 1, [](const int &a, const int &b) { return mx[a] < mx[b]; }); sort(idx + mid + 1, idx + r + 1, [](const int &a, const int &b) { return ai[a] < ai[b]; }); for (int i = mid + 1, ptr = l; i <= r; i++) { while (ptr <= mid && mx[idx[ptr]] <= ai[idx[i]]) update(ai[idx[ptr]], dp[idx[ptr]]), ptr++; dp[idx[i]] = max(dp[idx[i]], query(mn[idx[i]]) + 1); } for (int i = mid + 1, ptr = l; i <= r; i++) while (ptr <= mid && mx[idx[ptr]] <= ai[idx[i]]) clear(ai[idx[ptr]]), ptr++; solve(mid + 1, r); } int main() { scanf("%d%d", &n, &m); for (int i = 1; i <= n; i++) scanf("%d", &ai[i]), mx[i] = mn[i] = ai[i]; for (int i = 1, x, y; i <= n; i++) scanf("%d%d", &x, &y), mx[x] = max(mx[x], y), mn[x] = min(mn[x], y); solve(1, n); int ans = *max_element(dp + 1, dp + 1 + n); printf("%d\n", ans); return 0; }