思路
这道题很好,很有趣。
如果您是神仙的话呢,可以考虑直接线段是卡掉本题(有人试过了),但是我这个菜鸡不行,所以写了题解的\(O(1)\)询问解法。
首先,树形 DP 的方程为:
\[ dp[u] = \frac{1}{2} * (dp[lson]+dp[rson]) \]
我们观察叶子节点对答案的贡献,发现为该条链上的权值和除掉\(2^{dep-1}\),也就是与深度有关。那么,为了简化答案,我们可以把这个写作:
\[ \frac{1}{2^{dep-1}} = 2^{1-dep} = \frac { 2^{maxDep – dep} }{ 2^{maxDep-1} } \]
就变成了乘法形式。我们在讨论询问的问题。在区间\([l,r]\)之间加上\(x\),链对答案的贡献是:
\[ x · \sum_{i = 1}^{dep} \frac{1}{2^{i-1}} \]
所以,维护一个前缀和,往答案上面加上前缀和段和这个贡献的积即可获得答案。(记得用 gcd 约分)
代码
// P3924.cpp #include <bits/stdc++.h> #define ll long long #define mid ((l + r) >> 1) #define lson (p << 1) #define rson ((p << 1) | 1) using namespace std; const int MAX_N = 1e6 + 2000; ll n, m, qwq, sum[MAX_N << 2], depth[MAX_N << 2], arr[MAX_N], s[MAX_N], max_dep; inline ll read() { ll s = 0, w = 1; char ch = getchar(); while (ch < '0' || ch > '9') { if (ch == '-') w = -1; ch = getchar(); } while (ch >= '0' && ch <= '9') s = s * 10 + ch - '0', ch = getchar(); return s * w; } void build(ll l, ll r, ll dp, ll p) { if (l == r) { sum[p] = arr[l], depth[l] = dp, max_dep = max(max_dep, dp); return; } build(l, mid, dp + 1, lson), build(mid + 1, r, dp + 1, rson); sum[p] = sum[lson] + sum[rson]; } ll query(ll l, ll r, ll p, ll dep, ll prefix) { if (l == r) return (1 << dep) * (prefix + sum[p]); return query(l, mid, lson, dep - 1, prefix + sum[p]) + query(mid + 1, r, rson, dep - 1, prefix + sum[p]); } ll gcd(ll a, ll b) { return (b == 0) ? a : gcd(b, a % b); } int main() { n = read(), m = read(), qwq = read(); for (int i = 1; i <= n; i++) arr[i] = read(); build(1, n, 1, 1); ll ans = query(1, n, 1, max_dep - 1, 0), dominator = 1 << (max_dep - 1); ll fact = gcd(dominator, qwq); dominator /= fact, qwq /= fact; for (int i = 1; i <= n; i++) s[i] = s[i - 1] + (((1 << depth[i]) - 1) << (max_dep - depth[i])); while (m--) { ll l = read(), r = read(), w = read(); ans += (s[r] - s[l - 1]) * w; printf("%lld\n", ans / dominator * qwq); } return 0; }