主要思路
乍一看很难直接做,我们考虑从那个长度为 \(m\) 的串开始搞,发现每个 \(01\) 都对应的是一个不等式条件:
\[ a(s + i) + b < p \]
其中在 \(m\) 串的位置中为 \(i\),在 \(S\) 中的位置为 \(s + i\)。列了这么多之后进行区间交,然后发现性质 \(\gcd(a, n) = 1\),代表 \(ai \bmod n\) 是一一对应的,所以我们求最后的值的个数只需要减去 \([n – m + 1, n – 1]\) 内符合条件的数即可。
代码
// P3589.cpp #include <bits/stdc++.h> using namespace std; const int MAX_N = 1e6 + 200; int n, a, b, p, m, ltot; char str[MAX_N]; pair<int, int> limits[MAX_N << 2]; void create(int l, int r) { if (l <= r) limits[++ltot] = make_pair(l, r); else limits[++ltot] = make_pair(l, n - 1), limits[++ltot] = make_pair(0, r); } int main() { scanf("%d%d%d%d%d%s", &n, &a, &b, &p, &m, str); int ans = 0; for (int i = 0; i < m; i++) if (str[i] == '0') create((p + n - 1LL * i * a % n) % n, (0LL + n - 1 - 1LL * i * a % n) % n); else create((n - 1LL * i * a % n) % n, (p + n - 1LL * i * a % n - 1) % n); for (int i = 1; i < m; i++) create((0LL + b + n - 1LL * a * i % n) % n, (0LL + b + n - 1LL * a * i % n) % n); sort(limits + 1, limits + 1 + ltot); int tmp = -1; for (int i = 1; i <= ltot; i++) { if (limits[i].first > tmp) ans += limits[i].first - tmp - 1, tmp = limits[i].second; else tmp = max(tmp, limits[i].second); } printf("%d\n", ans + n - 1 - tmp); return 0; }