解法
翻译一下:
给你一棵带点权的树和一堆路径,问对于每一个点\(i\)有多少条路经满足\(w(s,i) = weight(i)\)。
听起来就挺毒瘤的,是吧。根据这一类树上问题的套路,考虑把所有路径拆成\((s \to LCA(s,t))\)和\((t \to LCA(s,t))\),分开处理。我们先来处理\((s \to LCA(s, t))\)这一类问题:假设我们现在要知道路径\((s \to LCA(s, t))\)对点\(i\)的贡献,必须满足:
\[ dist(s, i) = wi[i] \\ dep[i] – dep[s] = w[i] \\ dep[i] – wi[i] = dep[s] \]
所以我们可以利用这个性质开个桶子装每个点的情况,最后统一计算贡献。另外一种同理。
代码
// P1600.cpp #include <bits/stdc++.h> using namespace std; const int MAX_N = 3e6 + 2000; int head[MAX_N], current, fa[20][MAX_N], dep[MAX_N], wi[MAX_N], max_dep; int bucket[MAX_N << 1], n, m, si[MAX_N], di[MAX_N], status[MAX_N], answer[MAX_N]; int bucket_up[1000011]; vector<int> lcaS[MAX_N], lcaT[MAX_N], tbuck[MAX_N]; struct route { int s, t, lca, len; } routes[MAX_N]; struct edge { int to, nxt; } edges[MAX_N << 1]; void addpath(int src, int dst) { edges[current].to = dst, edges[current].nxt = head[src]; head[src] = current++; } void initialize(int u) { max_dep = max(max_dep, dep[u]); for (int i = head[u]; i != -1; i = edges[i].nxt) if (edges[i].to != fa[0][u]) { dep[edges[i].to] = dep[u] + 1; fa[0][edges[i].to] = u; initialize(edges[i].to); } } int getLCA(int x, int y) { if (dep[x] < dep[y]) swap(x, y); for (int i = 19; i >= 0; i--) if (dep[fa[i][x]] >= dep[y]) x = fa[i][x]; if (x == y) return x; for (int i = 19; i >= 0; i--) if (fa[i][x] != fa[i][y]) x = fa[i][x], y = fa[i][y]; return fa[0][x]; } void dfs_downward(int u) { int now = wi[u] + dep[u], previous; if (now <= max_dep) previous = bucket[now]; for (int i = head[u]; i != -1; i = edges[i].nxt) if (edges[i].to != fa[0][u]) dfs_downward(edges[i].to); bucket[dep[u]] += status[u]; if (now <= max_dep) answer[u] = bucket[now] - previous; for (int i = 0, siz = lcaS[u].size(); i < siz; i++) bucket[dep[lcaS[u][i]]]--; } void dfs_upward(int u) { int now = dep[u] - wi[u] + MAX_N, previous = bucket_up[now]; for (int i = head[u]; i != -1; i = edges[i].nxt) if (edges[i].to != fa[0][u]) dfs_upward(edges[i].to); for (int i = 0, siz = tbuck[u].size(); i < siz; i++) bucket_up[MAX_N + tbuck[u][i]]++; answer[u] += bucket_up[now] - previous; for (int i = 0, siz = lcaT[u].size(); i < siz; i++) bucket_up[MAX_N + lcaT[u][i]]--; } int main() { memset(head, -1, sizeof(head)); scanf("%d%d", &n, &m); for (int i = 1; i <= n - 1; i++) { int u, v; scanf("%d%d", &u, &v), addpath(u, v), addpath(v, u); } dep[1] = 1, initialize(1); for (int i = 1; i < 20; i++) for (int j = 1; j <= n; j++) fa[i][j] = fa[i - 1][fa[i - 1][j]]; for (int i = 1; i <= n; i++) scanf("%d", &wi[i]); for (int i = 1; i <= m; i++) { scanf("%d%d", &routes[i].s, &routes[i].t); status[routes[i].s]++; routes[i].lca = getLCA(routes[i].s, routes[i].t); routes[i].len = dep[routes[i].s] + dep[routes[i].t] - 2 * dep[routes[i].lca]; lcaS[routes[i].lca].push_back(routes[i].s); } dfs_downward(1); for (int i = 1; i <= m; i++) { tbuck[routes[i].t].push_back(dep[routes[i].t] - routes[i].len); lcaT[routes[i].lca].push_back(dep[routes[i].t] - routes[i].len); } dfs_upward(1); for (int i = 1; i <= m; i++) if (dep[routes[i].s] - dep[routes[i].lca] == wi[routes[i].lca]) answer[routes[i].lca]--; for (int i = 1; i <= n; i++) printf("%d ", answer[i]); return 0; }