A – 道路铺设
这道题考场上神智不清,敲了个线段树拿了满分(当然不用这么复杂)。以下是考场代码。
// road.cpp // NOIp rp++; #include <iostream> #include <cstdio> #include <algorithm> using namespace std; const int maxn= 100200; const int INF = 1e9 + 1e8; // segment tree; int arr[maxn],tree[maxn*4],treeid[maxn*4],n; void build(int l, int r, int node) { if(l == r) { tree[node] = arr[l]; treeid[node] = l; return; } int mid = (l+r)>>1; if(l<=mid) build(l,mid,2*node); if(mid<r) build(mid+1,r,2*node+1); if(tree[2*node]<tree[2*node+1]) treeid[node] = treeid[2*node]; else treeid[node] = treeid[2*node+1]; tree[node] = min(tree[2*node], tree[2*node+1]); } void update(int ql, int qr, int l, int r, int node, int c) { if(l == r) { tree[node] += c; treeid[node] = l; return; } int mid = (l+r)>>1; if(ql<=mid) update(ql,qr,l,mid,2*node,c); if(mid<qr) update(ql,qr,mid+1,r,2*node+1,c); if(tree[2*node]<tree[2*node+1]) treeid[node] = treeid[2*node]; else treeid[node] = treeid[2*node+1]; tree[node] = min(tree[2*node], tree[2*node+1]); } struct result { int val,id; result(){ } result(int v, int i) { val = v; id = i; } bool operator<(const result& t)const { return val<t.val; } }; result getMin(int ql, int qr, int l, int r, int node) { if(ql<=l && r<=qr) return result(tree[node],treeid[node]); int mid = (l+r)>>1; result val = result(INF,0); if(ql<=mid) val = min(val, getMin(ql,qr,l,mid,2*node)); if(mid<qr) val = min(val, getMin(ql,qr,mid+1,r,2*node+1)); return val; } long long ans = 0; void solve(int l, int r) { result minres = getMin(l,r,1,n,1); int min_val = minres.val; ans += min_val; if(min_val!=0) update(l,r,1,n,1,-min_val); if(l == r && min_val == 0) return; int mid = minres.id; if(l<mid) solve(l,mid-1); if(mid<r) solve(mid+1,r); } // segment tree OK! int main() { scanf("%d", &n); for(int i = 1;i<=n;i++) scanf("%d",&arr[i]); build(1,n,1); solve(1,n); printf("%lld",ans); return 0; }
B – 货币系统
sb 背包,先排序保证用小的换大的。
// P5020.cpp #include <bits/stdc++.h> using namespace std; const int MAX_N = 110, MAX_DOM = 25010; int T, n, ai[MAX_N]; bool dp[MAX_DOM]; int main() { scanf("%d", &T); while (T--) { scanf("%d", &n); for (int i = 1; i <= n; i++) scanf("%d", &ai[i]); sort(ai + 1, ai + 1 + n); memset(dp, false, sizeof(dp)), dp[0] = true; int cnt = 0; for (int i = 1; i <= n; i++) { if (dp[ai[i]] == true) continue; cnt++; for (int j = 0; j < MAX_DOM; j++) if (j >= ai[i]) dp[j] |= dp[j - ai[i]]; } printf("%d\n", cnt); } return 0; }
C – 赛道修建
其实大概的思路是可以想到的:二分出一个基准长度,然后利用这个长度去找最多有多少个链,大概就是贪心地从下面抽点,然后把不足的链拼在一起。拼的时候也要用二分,所以这个复杂度带两个\(\log\)。数据范围大概就是这样的。
// P5021.cpp #include <bits/stdc++.h> typedef long long ll; using namespace std; const int MAX_N = 50500; int head[MAX_N], current, n, prod[MAX_N], m; ll dist[MAX_N]; vector<ll> sons[MAX_N]; struct edge { int to, nxt, weight; } edges[MAX_N << 1]; void addpath(int src, int dst, int weight) { edges[current].to = dst, edges[current].nxt = head[src]; edges[current].weight = weight, head[src] = current++; } int getPairs(int u, int mid, int tot, ll limit) { int ret = 0; for (int r = tot - 1, l = 0; r >= 1; r--) { r -= (r == mid); while (l < r && sons[u][l] + sons[u][r] < limit) l++; l += (l == mid); if (l >= r) break; ret++, l++; } return ret; } void dfs(int u, int fa, ll limit) { dist[u] = prod[u] = 0; sons[u].clear(); for (int i = head[u]; i != -1; i = edges[i].nxt) if (edges[i].to != fa) { dfs(edges[i].to, u, limit); dist[edges[i].to] += edges[i].weight; if (dist[edges[i].to] >= limit) prod[u]++; else sons[u].push_back(dist[edges[i].to]); } int siz = sons[u].size(); sort(sons[u].begin(), sons[u].end()); int res = 0; for (int r = siz - 1, l = 0; r >= 1; r--) { while (l < r && sons[u][l] + sons[u][r] < limit) l++; if (l >= r) break; res++, l++; } prod[u] += res; if ((res << 1) == siz) return; int l = 0, r = siz - 1, ret; while (l <= r) { int mid = (l + r) >> 1; if (getPairs(u, mid, siz, limit) == res) ret = mid, l = mid + 1; else r = mid - 1; } dist[u] = sons[u][ret]; } bool check(ll limit) { int lane_tot = 0; dfs(1, 0, limit); for (int i = 1; i <= n; i++) lane_tot += prod[i]; return lane_tot >= m; } int main() { memset(head, -1, sizeof(head)); ll l = 0, r = 0, ans = 0; scanf("%d%d", &n, &m); for (int i = 1, u, v, w; i <= n - 1; i++) scanf("%d%d%d", &u, &v, &w), addpath(u, v, w), addpath(v, u, w), r += w; r /= 1LL * m; while (l <= r) { int mid = (l + r) >> 1; if (check(mid)) ans = mid, l = mid + 1; else r = mid - 1; } printf("%lld", ans); return 0; }
D – 旅行
sb \(O(n^2)\)随便拆边进行 DFS。太水了。
// P5022.cpp #include <bits/stdc++.h> using namespace std; const int MAX_N = 5050; int n, m, deg[MAX_N], ST, ED; vector<int> ans, now, G[MAX_N]; void dfs(int u, int fa) { now.push_back(u); for (int i = 0, siz = G[u].size(); i < siz; i++) { if ((ST == u && ED == G[u][i]) || (ST == G[u][i] && ED == u) || fa == G[u][i]) continue; dfs(G[u][i], u); } } bool compare() { if (ans.empty()) return true; for (int i = 0; i < n; i++) if (now[i] < ans[i]) return true; else if (now[i] > ans[i]) return false; return false; } void toposort() { queue<int> q; for (int i = 1; i <= n; i++) if (deg[i] == 1) q.push(i); while (!q.empty()) { int u = q.front(); q.pop(); for (int i = 0, siz = G[u].size(); i < siz; i++) if (--deg[G[u][i]] == 1) q.push(G[u][i]); } } int main() { /* freopen("travel.in", "r", stdin); freopen("travel.out", "w", stdout); */ scanf("%d%d", &n, &m); for (int i = 1, u, v; i <= m; i++) scanf("%d%d", &u, &v), deg[u]++, deg[v]++, G[u].push_back(v), G[v].push_back(u); for (int i = 1; i <= n; i++) sort(G[i].begin(), G[i].end()); if (m == n - 1) { dfs(1, 0); for (int i = 0, siz = now.size(); i < siz; i++) printf("%d ", now[i]); return 0; } else { toposort(); for (int u = 1; u <= n; u++) for (int i = 0, siz = G[u].size(); i < siz; i++) if (u < G[u][i] && deg[u] > 1 && deg[G[u][i]] > 1) { ST = u, ED = G[u][i]; now.clear(); dfs(1, 0); if (compare()) swap(ans, now); } for (int i = 0, siz = ans.size(); i < siz; i++) printf("%d ", ans[i]); } return 0; }
E – 填数游戏
写得心好痛,因为如果今年 NOIp 真考这样的神经题,真的就送掉了。我只写几个情况的:
- \(n = 1\)时,显然答案等于\(2^m\)(随便填)。
- \(n = 2\)时,答案等于\(4 \cdot 3^{m – 1} \),因为初始状态就有\(4\)种,再加上对角线不增这个性质就可以想到。
- \(n = 3\)时,找一下规律就发现等于\(122 \times 3^{m – 3}\)。
所以这道题 50 分还是比较好拿的。剩下的分基本上告辞任命。
// P5023.cpp #include <bits/stdc++.h> #define ll long long using namespace std; const int mod = 1e9 + 7; int quick_pow(int bas, int tim) { int ans = 1; while (tim) { if (tim & 1) ans = 1LL * ans * bas % mod; bas = 1LL * bas * bas % mod; tim >>= 1; } return ans; } int main() { int n, m; scanf("%d%d", &n, &m); if (n > m) swap(n, m); if (n == 1) printf("%d", quick_pow(2, m)); else if (n == 2) // decending sequence order makes it 3 options; printf("%lld", 4LL * quick_pow(3, m - 1) % mod); else if (n == 3) // What the fuck. printf("%lld", 112LL * quick_pow(3, m - 3) % mod); else { if (n == m) printf("%lld", (83LL * quick_pow(8, n) % mod + 5LL * quick_pow(2, n + 7) % mod) * quick_pow(384, mod - 2) % mod); else printf("%lld", (83LL * quick_pow(8, n) % mod + quick_pow(2, n + 8) % mod) % mod * quick_pow(128, mod - 2) % mod * quick_pow(3, m - n - 1) % mod); } return 0; }
F – 保卫王国
倍增 DP 的好题。50 分随便送,\(O(nm)\)搞定,剩下的分就需要对询问进行分析:考虑每次都是对链的限制,所以可以考虑额外考虑一种 DP,设状态\(f[0/1][0/1][u][v]\)表示\(u\)选不选、\(v\)选不选的情况的答案。因为这种 DP 的信息可以合并,我们不妨用倍增压缩下,然后在对两条单链进行合并(分类讨论中间的 LCA 是否选)。大概是这样,代码其实表达的也比较自然,所以就不过多解释。
// P5024.cpp #include <bits/stdc++.h> #define ll long long using namespace std; const int MAX_N = 1e5 + 200; const ll INF = 0x3f3f3f3f3f3f3f3f; int head[MAX_N], current, n, q, val[MAX_N], dep[MAX_N], fa[20][MAX_N], m; ll f[2][2][20][MAX_N], dp[MAX_N][2]; char typ[10]; struct edge { int to, nxt; } edges[MAX_N << 1]; void addpath(int src, int dst) { edges[current].to = dst, edges[current].nxt = head[src]; head[src] = current++; } // checked; // at predfs(int); void predfs(int u) { dep[u] = dep[fa[0][u]] + 1, dp[u][1] = val[u], f[0][0][0][u] = INF; for (int i = 1; i <= 19; i++) fa[i][u] = fa[i - 1][fa[i - 1][u]]; for (int i = head[u]; i != -1; i = edges[i].nxt) if (edges[i].to != fa[0][u]) { fa[0][edges[i].to] = u; predfs(edges[i].to); dp[u][0] += dp[edges[i].to][1]; dp[u][1] += min(dp[edges[i].to][0], dp[edges[i].to][1]); } } void dfs(int u) { // not selecting the node u but the father node; f[1][0][0][u] = dp[fa[0][u]][0] - dp[u][1]; f[0][1][0][u] = f[1][1][0][u] = dp[fa[0][u]][1] - min(dp[u][0], dp[u][1]); // to process the chains bypassing the LCA: for (int i = 1; (1 << i) < dep[u]; i++) { // merging two chains from 2 situations: mid point chosen or not; int mid_point = fa[i - 1][u]; f[0][0][i][u] = min(f[0][0][i - 1][u] + f[0][0][i - 1][mid_point], f[0][1][i - 1][u] + f[1][0][i - 1][mid_point]); f[0][1][i][u] = min(f[0][0][i - 1][u] + f[0][1][i - 1][mid_point], f[0][1][i - 1][u] + f[1][1][i - 1][mid_point]); f[1][0][i][u] = min(f[1][0][i - 1][u] + f[0][0][i - 1][mid_point], f[1][1][i - 1][u] + f[1][0][i - 1][mid_point]); f[1][1][i][u] = min(f[1][0][i - 1][u] + f[0][1][i - 1][mid_point], f[1][1][i - 1][u] + f[1][1][i - 1][mid_point]); } for (int i = head[u]; i != -1; i = edges[i].nxt) if (edges[i].to != fa[0][u]) dfs(edges[i].to); } ll query(int x, int y, bool togA, bool togB) { if (dep[x] < dep[y]) swap(x, y), swap(togA, togB); ll x_enable = INF, y_enable = INF; ll x_disable = INF, y_disable = INF, answer; ll ans0 = INF, ans1 = INF; int lca; if (togA) x_enable = dp[x][1]; else x_disable = dp[x][0]; if (togB) y_enable = dp[y][1]; else y_disable = dp[y][0]; for (int i = 19; i >= 0; i--) if (dep[fa[i][x]] >= dep[y]) { ll xdis = x_disable, xen = x_enable; x_disable = min(xdis + f[0][0][i][x], xen + f[1][0][i][x]); x_enable = min(xdis + f[0][1][i][x], xen + f[1][1][i][x]); x = fa[i][x]; } if (x == y) lca = x, togB ? ans1 = x_enable : ans0 = x_disable; else { for (int i = 19; i >= 0; i--) if (fa[i][x] != fa[i][y]) { ll xdis = x_disable, xen = x_enable; ll ydis = y_disable, yen = y_enable; x_disable = min(xdis + f[0][0][i][x], xen + f[1][0][i][x]); x_enable = min(xdis + f[0][1][i][x], xen + f[1][1][i][x]); y_disable = min(ydis + f[0][0][i][y], yen + f[1][0][i][y]); y_enable = min(ydis + f[0][1][i][y], yen + f[1][1][i][y]); x = fa[i][x], y = fa[i][y]; } lca = fa[0][x]; ans0 = dp[lca][0] - dp[x][1] - dp[y][1] + x_enable + y_enable; ans1 = dp[lca][1] - min(dp[x][1], dp[x][0]) - min(dp[y][0], dp[y][1]) + min(x_enable, x_disable) + min(y_enable, y_disable); } if (lca == 1) answer = min(ans1, ans0); else { for (int i = 19; i >= 0; i--) if (dep[lca] - (1 << i) > 1) { ll tmp0 = ans0, tmp1 = ans1; ans0 = min(tmp0 + f[0][0][i][lca], tmp1 + f[1][0][i][lca]); ans1 = min(tmp0 + f[0][1][i][lca], tmp1 + f[1][1][i][lca]); lca = fa[i][lca]; } answer = min(dp[1][0] - dp[lca][1] + ans1, dp[1][1] - min(dp[lca][0], dp[lca][1]) + min(ans1, ans0)); } return answer >= INF ? -1 : answer; } int main() { memset(head, -1, sizeof(head)); scanf("%d%d%s", &n, &m, typ + 1); for (int i = 1; i <= n; i++) scanf("%d", &val[i]); for (int i = 1, u, v; i <= n - 1; i++) scanf("%d%d", &u, &v), addpath(u, v), addpath(v, u); predfs(1), dfs(1); while (m--) { int u, v, x, y; scanf("%d%d%d%d", &u, &x, &v, &y); printf("%lld\n", query(u, v, x, y)); } return 0; }