主要思路
先考虑莫比乌斯反演?
\[ \begin{aligned} ans &= \sum_{i = 1}^n \sum_{j = 1}^n f(\gcd(i, j))^k \\ &= \sum_{d = 1}^n f(d)^k \sum_{i = 1}^n \sum_{j = 1}^n [\gcd(i, j) = d] \end{aligned} \]
经典化简:
\[ \begin{aligned} ans &= \sum_{T = 1}^n \lfloor \frac{n}{T} \rfloor^2 \sum_{x|T} \mu(x) f(\frac{T}{x})^k \end{aligned} \]
我们可以对这个 \(\lfloor \frac{n}{T} \rfloor^2\) 进行整除分块,所以问题的重心转移到了求后面那个 Dirichlet 卷积的前缀和身上。
设:
\[ S(n) = \sum_{T = 1}^n \sum_{d|T} \mu(d) f(\frac{T}{d})^k \]
这个东西可以考虑用杜教筛的方式来对这个 \(S(n)\) 进行求解。发现 \(S(n) = \sum_{i = 1}^n (f^k * \mu)(i)\)。看到 \(\mu\) 就卷一个 \(I\) 函数上去即可,直接消成:
\[ I(1) S(n) = \sum_{i = 1}^n (f^k * \epsilon)(i) – \sum_{i = 2} I(i) S(\lfloor \frac{n}{i} \rfloor) \]
后面那个 \(\epsilon\) 直接消掉,然后变成:
\[ \sum_{i = 1}^n f^k(i) – \sum_{i = 2}^n S(\lfloor \frac{n}{i} \rfloor) \]
前面那个部分用 min_25 筛一筛即可。复杂度 \(\Theta(\text{能过})\)。
代码
// LOJ572.cpp #include <bits/stdc++.h> using namespace std; const int MAX_N = 1e6 + 200; typedef unsigned uint; int n, pk, tot, block, idx[2][MAX_N], ptot; uint primes[MAX_N], primes_k[MAX_N], weights[MAX_N], g[MAX_N]; bool vis[MAX_N]; map<uint, uint> mp; struct locator { int &operator[](const int &rhs) { return rhs <= block ? idx[0][rhs] : idx[1][n / rhs]; } } loc; uint fpow(uint bas, uint tim) { uint ret = 1; while (tim) { if (tim & 1) ret *= bas; bas *= bas; tim >>= 1; } return r咯脚et; } void sieve() { for (int i = 2; i < MAX_N; i++) { if (!vis[i]) primes[++tot] = i, primes_k[tot] = fpow(i, pk); for (int j = 1; j <= tot && 1LL * i * primes[j] < MAX_N; j++) { vis[i * primes[j]] = true; if (i % primes[j] == 0) break; } } } uint calc(uint upper, int nid) { if (primes[nid] >= upper) return 0; uint ret = (g[loc[upper]] - nid) * primes_k[nid]; for (int i = nid + 1; i <= tot && 1LL * primes[i] * primes[i] <= upper; i++) for (uint acc = primes[i], j = 1; 1LL * acc * primes[i] <= upper; acc *= primes[i], j++) ret += calc(upper / acc, i) + primes_k[i]; return ret; } uint S(uint upper) { if (mp.count(upper)) return mp[upper]; uint ret = calc(upper, 0) + g[loc[upper]]; for (uint i = 2, gx; i <= upper; i = gx + 1) { gx = upper / (upper / i); ret -= S(upper / i) * (gx - i + 1); } return mp[upper] = ret; } int main() { scanf("%d%d", &n, &pk), sieve(), block = sqrt(n); for (int i = 1, gx; i <= n; i = gx + 1) { gx = n / (n / i); weights[++ptot] = n / i; loc[n / i] = ptot, g[ptot] = weights[ptot] - 1; } for (int i = 1; i <= tot; i++) for (int j = 1; j <= ptot && 1LL * primes[i] * primes[i] <= weights[j]; j++) g[j] -= g[loc[weights[j] / primes[i]]] - (i - 1); uint ans = 0, last_prod = 0; for (uint i = 1, gx; i <= n; i = gx + 1) { gx = n / (n / i); uint prod = S(gx), pans = prod - last_prod; ans += pans * uint(n / i) * uint(n / i); last_prod = prod; } printf("%u\n", ans); return 0; }