主要思路
这道题是要求你实现一个 Checker,来判断是否有长度相同的环。实现的主要方式是找出所有的环并放到桶里面进行统计。我们可以观察出一些简单的性质,来做一次判断:
- 如果存在一个边双连通分量,其 \(|E| – |V| \geq \sqrt{|V|} \),那么一定是存在两个同长环的。这个具体证明可以进行平方,然后发现差值的平方大于点数,感性理解:通过鸽巢定理,出会有一些边构造出相同长度的环。
之后,我们可以考虑把度数为 2 的点去掉,缩成一张新的图。然后,再做暴力的 DFS 来判断是否存在同长环:具体而言,选择一个起点,然后在 DFS 之后删去。
时间复杂度是 \(\Theta(n^2)\) 的。
代码
// LOJ3077.cpp #include <bits/stdc++.h> using namespace std; const int MAX_N = 1e5 + 200, MAX_E = 1e6 + 200; int n, m, head[MAX_N], current, dfn[MAX_N], low[MAX_N], stk[MAX_N], aff[MAX_N]; int tail, ptot, deg[MAX_N], vertexTot, edgeTot, ncnt, ans[MAX_N], mem[MAX_N], remTot; bool inst[MAX_N], valid[MAX_N], vis[MAX_N], checked[MAX_N]; set<int> G[MAX_N]; vector<pair<pair<int, int>, int> /**/> rem[MAX_N]; vector<int> remPts; struct edge { int to, nxt; } edges[MAX_E << 1]; void addpath(int src, int dst) { edges[current].to = dst, edges[current].nxt = head[src]; head[src] = current++; } void tarjan(int u, int fa) { dfn[u] = low[u] = ++ptot, vertexTot++, edgeTot += deg[u], stk[++tail] = u, inst[u] = true; for (int i = head[u]; i != -1; i = edges[i].nxt) if (edges[i].to != fa) if (dfn[edges[i].to] == 0) tarjan(edges[i].to, u), low[u] = min(low[u], low[edges[i].to]); else if (inst[edges[i].to]) low[u] = min(low[u], dfn[edges[i].to]); if (low[u] == dfn[u]) { ncnt++; do { aff[stk[tail]] = ncnt, inst[stk[tail]] = false; } while (stk[tail--] != u); } } void dfs(int u) { vis[u] = true; vertexTot++, edgeTot += G[u].size(); for (auto &dst : G[u]) if (!vis[dst]) dfs(dst); } void rebuild(int org, int fa, int u, int len) { G[fa].erase(u), G[u].erase(fa); if (valid[u]) { if (org == u) { ans[len] += 2; if (ans[len] >= 3) puts("Yes"), exit(0); return; } rem[org].emplace_back(make_pair(u, len), ++remTot); rem[u].emplace_back(make_pair(org, len), remTot); return; } int dst = *G[u].begin(); rebuild(org, u, dst, len + 1); } int find(int x) { return x == mem[x] ? x : mem[x] = find(mem[x]); } bool check(int x, int y) { for (auto i : remPts) mem[i] = i; for (auto u : remPts) for (auto v : rem[u]) if (!checked[v.second]) mem[find(u)] = find(v.first.first); return find(x) == find(y); } void solve(int u, int org, int dep) { if (!check(u, org)) return; if (dep && u == org) { if (++ans[dep] >= 3) puts("Yes"), exit(0); return; } while (!rem[u].empty() && rem[u].back().first.first < org) rem[u].pop_back(); for (int i = 0; i < rem[u].size(); i++) { pair<pair<int, int>, int> x = rem[u][i]; if (!checked[x.second] && !vis[x.first.first]) { checked[x.second] = vis[x.first.first] = true; solve(x.first.first, org, dep + x.first.second); checked[x.second] = vis[x.first.first] = false; } } } int main() { // freopen("4-01.in", "r", stdin); memset(head, -1, sizeof(head)); scanf("%d%d", &n, &m); for (int i = 1, u, v; i <= m; i++) scanf("%d%d", &u, &v), addpath(u, v), addpath(v, u), deg[u]++, deg[v]++; for (int i = 1; i <= n; i++) if (dfn[i] == 0) { vertexTot = 0, edgeTot = 0, tarjan(i, 0); if ((edgeTot >> 1) - vertexTot - 2 >= sqrt(vertexTot)) { puts("Yes"); return 0; } } for (int u = 1; u <= n; u++) for (int i = head[u]; i != -1; i = edges[i].nxt) if (aff[edges[i].to] == aff[u]) G[u].insert(edges[i].to); for (int i = 1; i <= n; i++) { valid[i] = G[i].size() >= 3; if (!vis[i]) { // start pos of the loop; vertexTot = edgeTot = 0, dfs(i); if (edgeTot == (vertexTot << 1)) { ans[vertexTot] += 2; if (ans[vertexTot] >= 3) { puts("Yes"); return 0; } } } } for (int i = 1; i <= n; i++) if (valid[i]) { remPts.push_back(i); while (!G[i].empty()) { int u = *G[i].begin(); rebuild(i, i, u, 1); } } for (int i = 1; i <= n; i++) sort(rem[i].begin(), rem[i].end()), reverse(rem[i].begin(), rem[i].end()); memset(vis, false, sizeof(vis)); for (int i = 1; i <= n; i++) if (valid[i]) solve(i, i, 0); puts("No"); return 0; }