解线性方程组
void gauss(int tot)
{
for (int i = 1; i <= tot; i++)
{
int idx = i;
for (int j = i + 1; j <= tot; j++)
if (fabs(mat[j][i]) > fabs(mat[idx][i]))
idx = j;
if (idx != i)
for (int j = i; j <= tot + 1; j++)
swap(mat[i][j], mat[idx][j]);
for (int j = 1; j <= tot; j++)
if (i != j)
{
double rate = mat[j][i] / mat[i][i];
for (int k = i; k <= tot + 1; k++)
mat[j][k] -= rate * mat[i][k];
}
}
}
异或方程组
GUGUGU
矩阵求逆
// P4783.cpp
#include <bits/stdc++.h>
using namespace std;
const int MAX_N = 440, mod = 1e9 + 7;
int n, mat[MAX_N][MAX_N << 1];
int fpow(int bas, int tim)
{
int ret = 1;
while (tim)
{
if (tim & 1)
ret = 1LL * ret * bas % mod;
bas = 1LL * bas * bas % mod;
tim >>= 1;
}
return ret;
}
void gauss_inverse()
{
for (int i = 1; i <= n; i++)
{
int key = 0;
for (int j = i; j <= n && key == 0; j++)
if (mat[j][i] != 0)
key = j;
if (key != i)
{
if (key == 0)
puts("No Solution"), exit(0);
for (int j = i; j <= (n << 1); j++)
swap(mat[i][j], mat[key][j]);
}
int inv = fpow(mat[i][i], mod - 2);
for (int j = i; j <= (n << 1); j++)
mat[i][j] = 1LL * mat[i][j] * inv % mod;
for (int j = 1; j <= n; j++)
if (i != j)
{
inv = mat[j][i];
for (int k = i; k <= (n << 1); k++)
mat[j][k] = (0LL + mat[j][k] + mod - 1LL * inv * mat[i][k] % mod) % mod;
}
}
}
int main()
{
scanf("%d", &n);
for (int i = 1; i <= n; i++)
{
mat[i][n + i] = 1;
for (int j = 1; j <= n; j++)
scanf("%d", &mat[i][j]);
}
gauss_inverse();
for (int i = 1; i <= n; i++, puts(""))
for (int j = n + 1; j <= (n << 1); j++)
printf("%d ", mat[i][j]);
return 0;
}
多项式插值
具体见:https://kalorona.com/oi/fortuna-oj-pa-apr-19/
求行列式
int gauss()
{
int res = 1;
for (int i = 0; i < n - 1; i++)
{
int key = i;
for (int j = i; j < n - 1; j++)
if (mat[j][i] != 0)
{
key = j;
break;
}
if (key != i)
{
res = mod - res;
for (int j = i; j < n - 1; j++)
swap(mat[i][j], mat[key][j]);
}
int inv = fpow(mat[i][i], mod - 2);
for (int j = i + 1; j < n - 1; j++)
{
int rate = 1LL * mat[j][i] * inv % mod;
for (int k = i; k < n - 1; k++)
mat[j][k] = (0LL + mat[j][k] + mod - 1LL * rate * mat[i][k] % mod) % mod;
}
}
for (int i = 0; i < n - 1; i++)
res = 1LL * res * mat[i][i] % mod;
return res;
}