今天比赛状态极差,又困、又饿,眼睛又干。
A – 拯救奶牛
我们先把问题转换为三角矩阵上两点的距离,可以类比曼哈顿距离,我们可以把距离分为纵向和横向两种来考虑。
首先是纵向。如果\((x_1,y_1)\)要到\((x_2,y_2)\),那么分下面几种情况:
- 如果\(x_1\)和\(x_2\)的奇偶性不同,那么贡献为\(2|x_1-x_2|-1\)。
- 如果相同,那么贡献为\(2|x_1-x_2|\)。
那么再来看横向。我们发现,如果我们把上方的三角形扩大成这样:
我们发现,这一范围内的三角形不需要额外的横向贡献,只需要计算纵向贡献即为答案。对于在同一行却不在这个区域内的三角形,横向贡献也非常好计算,做差乘二即可。
记得要对输入点进行排序。
代码
// A.cpp #include <bits/stdc++.h> #define pr pair<int, int> using namespace std; const int MAX_N = 1001000; pr prs[MAX_N]; int n, m, si, sj; int answer, exitI, exitJ; int main() { answer = 0x3f3f3f3f; scanf("%d%d%d%d", &m, &n, &si, &sj); for (int i = 1; i <= n; i++) scanf("%d%d", &prs[i].first, &prs[i].second); sort(prs + 1, prs + 1 + n); for (int i = 1; i <= n; i++) { pr pta = prs[i], ptb = make_pair(si, sj); if (pta.first < ptb.first) swap(pta, ptb); int jl = ptb.second, jr = ptb.second + (pta.first - ptb.first) * 2; int ans = (pta.first - ptb.first) << 1; if (pta.second >= jl && pta.second <= jr && (ans < answer || (ans == answer && exitJ >= prs[i].second))) { answer = ans, exitI = prs[i].first, exitJ = prs[i].second; if ((pta.second & 1) != (ptb.second & 1)) answer -= 1; continue; } ans += min(abs(pta.second - jl), abs(pta.second - jr)); if (ans < answer || (ans == answer && exitJ >= prs[i].second)) answer = ans, exitI = prs[i].first, exitJ = prs[i].second; } printf("%d %d\n%d", exitI, exitJ, answer + 1); return 0; }
B – 邮递员
首先,这道题的\(w_i\)毫无卵用。我们来看这个\(w_i\)对亏损的贡献:
\[ \sum_{i=1}^{n}( i-w_{s_i} )= \frac{n(n-1)}{2}-\sum_{i=1}^{n} w_i \]
所以顺序根本不会造成影响。所以,我们来找一条最短的一笔画路径且字典序最小,方可保证答案最简。
因为题目里明显的说了(可惜我没看到,眼瞎了)
能够离开每个村子的路口的数目一定是2,4或者8。
我可真是个傻逼。
所以,用邻接表存图,然后按标号从小到大进行 DFS 写栈,最后反向弹栈输出即可。
代码
// B.cpp #include <bits/stdc++.h> using namespace std; const int MAX_N = 220; int n, m, wi[MAX_N], tmpx, tmpy, dist[MAX_N][MAX_N], tot; stack<int> stk; void dfs(int u) { for (int i = 1; i <= n; i++) if (dist[u][i]) { dist[u][i]--, dist[i][u]--; dfs(i); } stk.push(u); } int main() { scanf("%d%d", &n, &m); for (int i = 1; i <= n; i++) scanf("%d", &wi[i]); for (int i = 1; i <= m; i++) scanf("%d%d", &tmpx, &tmpy), dist[tmpx][tmpy]++, dist[tmpy][tmpx]++; dfs(1); printf("%d\n", stk.size() - 1); while (!stk.empty()) printf("%d ", stk.top()), stk.pop(); return 0; }
C – 最小密度路径
我们可以考虑设置状态\(f[i][j][k]\)为从节点\(i\)到\(j\)走了\(k\)条边的总长度,然后 Floyd 预处理,最后\(O(n)\)回答即可,傻逼题。
代码
// C.cpp #include <bits/stdc++.h> using namespace std; const int MAX_N = 55, MAX_M = 1200; int n, m, tmpx, tmpy, tmpz, f[MAX_N][MAX_N][MAX_M], dist[MAX_N][MAX_N], q; int main() { scanf("%d%d", &n, &m); memset(f, 0x3f, sizeof(f)), memset(dist, 0x3f, sizeof(dist)); for (int i = 1; i <= m; i++) scanf("%d%d%d", &tmpx, &tmpy, &tmpz), dist[tmpx][tmpy] = min(dist[tmpx][tmpy], tmpz); for (int i = 1; i <= n; i++) f[i][i][0] = 0; for (int s = 1; s <= n; s++) for (int k = 1; k <= n; k++) for (int i = 1; i <= n; i++) for (int j = 1; j <= n; j++) if (f[i][j][s] > f[i][k][s - 1] + dist[k][j]) f[i][j][s] = f[i][k][s - 1] + dist[k][j]; scanf("%d", &q); while (q--) { double ans = (double)0x3f3f3f3f; int i, j; bool flag = true; scanf("%d%d", &i, &j); for (int s = 1; s <= n; s++) if (1.0 * f[i][j][s] / (1.0 * s) < ans && f[i][j][s] != (double)0x3f3f3f3f) ans = min(ans, 1.0 * f[i][j][s] / (1.0 * s)), flag = false; if (flag) puts("OMG!"); else printf("%.3lf\n", ans); } return 0; }