A – Attack
这道题在 JZOJ 上面开 10s,遂 AC。
// A.cpp #include <bits/stdc++.h> using namespace std; const int MAX_N = 60100; struct point { int x, y, prop, id; bool operator<(const point &pt) const { return prop < pt.prop; } } nodes[MAX_N], *cur[MAX_N]; int n, m; char opt[10]; int main() { scanf("%d%d", &n, &m); for (int i = 1; i <= n; i++) scanf("%d%d%d", &nodes[i].x, &nodes[i].y, &nodes[i].prop), nodes[i].id = i; sort(nodes + 1, nodes + 1 + n); for (int i = 1; i <= n; i++) cur[nodes[i].id] = &nodes[i]; while (m--) { scanf("%s", opt + 1); int x, y, x_, y_, k; if (opt[1] == 'Q') { scanf("%d%d%d%d%d", &x, &y, &x_, &y_, &k); bool flag = false; for (int i = 1; i <= n; i++) if (nodes[i].x <= max(x, x_) && nodes[i].x >= min(x, x_) && nodes[i].y <= max(y, y_) && nodes[i].y >= min(y, y_)) { k--; if (k == 0) { printf("%d\n", nodes[i].prop), flag = true; break; } } if (!flag) puts("It doesn't exist."); } else { scanf("%d%d", &x, &y), x++, y++; swap(cur[x]->x, cur[y]->x), swap(cur[x]->y, cur[y]->y); swap(cur[x]->id, cur[y]->id), swap(cur[x], cur[y]); } } return 0; }
B – Contra
这道题是一道很有意思的概率 DP 题,需要先二分出一个概率\(p\),再用期望 DP 加上矩阵快速幂进行优化。
我们先来考虑正常 DP 的写法。考虑一个状态\(g[i][j][k]\)代表到达第\(i\)局游戏、剩下\(j\)条命且连续\(k\)局这样的局势的概率,转移非常的好想:
\[ \begin{cases} g[i + 1][min(j + 1, Q)][min(k + 1, R)] += g[i][j][k] \times p \\ g[i + 1][j – 1][0] += g[i][j][k] \times (1 – p) \end{cases} \]
然而在这里\(g\)仅仅是概率,我们要求的是期望:我们可以发现,向\(answer\)中直接累加每个状态对答案的「单独贡献」即可,也就是:
\[ answer += g[i][j][k] \times k \]
这样就可以拿到 50 分了。接下来的 50 分则需要用非常厉害的矩阵快速幂了。我们发现,转移中,每一个状态只跟\(i-1\)有关,所以可以使用矩阵快速幂;且,\(j, k\)组合起来的情况很少,所以我们可以直接暴力压缩\(j, k\)的状态到一个数组\(mapper[j][k] = zippedCode\),最后发现不超过\(100\),所以可以直接过\(O(n^3)\)的矩阵乘法。
现在考虑三个矩阵:\(f\)是最终答案需要用的矩阵,\(a_1\)是概率矩阵,\(a_2\)是贡献矩阵,那么显然,\(a_1 * a_2\)就是期望矩阵。
回顾一下矩阵乘法:
\[ matrix[i][j] = \sum_{k = 1}^m{matrix_{size}} f[i][k] * g[k][j] \]
发现这个很像转移的形式:\(i\)行表示原来的\(S_i\)(状态),\(j\)列表示现在要转移到的\(S_j\)(状态),那么矩阵中第\(i\)行\(j\)列的元素代表的就是从\(S_i\)到\(S_j\)的概率。这个概率连续乘起来就可以得到第\(n\)轮的所有状态两两之间的概率。具体矩阵设置见代码,很好理解。
我们的初始状态是\(S = 1\),终止状态是\(S = stat_tot\),也就是最后一个状态。所以我们设置\(f\)的时候设置前两个状态之间直接概率为\(1\)即可。然后\(\log n\)快速幂就完了。
// B.cpp #include <bits/stdc++.h> #define ll long long using namespace std; const int MAX_Q = 6, MAX_R = 21; const double eps = 1e-8; int N, R, Q, mat_siz, stat_siz, mapper[MAX_Q][MAX_R]; ll S; struct matrix { double mat[155][155]; void clear() { memset(mat, 0, sizeof(mat)); } matrix operator*(const matrix &target) const { matrix ans; ans.clear(); for (int i = 1; i <= mat_siz; i++) for (int j = 1; j <= mat_siz; j++) for (int k = 1; k <= mat_siz; k++) ans.mat[i][j] += mat[i][k] * target.mat[k][j]; return ans; } } f, a1, a2, b; double DP(double p) { f.clear(), a1.clear(), a1.clear(); for (int lives = 1; lives <= Q; lives++) for (int conseq = 0; conseq <= R; conseq++) if (lives >= conseq || lives == Q) { // this is how the probability matrix is set. a1.mat[mapper[lives][conseq]][mapper[min(lives + 1, Q)][min(conseq + 1, R)]] = p; a1.mat[mapper[lives][conseq]][mapper[lives - 1][0]] = 1.0 - p; } a1.mat[stat_siz][stat_siz] = 1; // this is how the Expectation works. for (int lives = 0; lives <= Q; lives++) for (int conseq = 0; conseq <= R; conseq++) if (lives >= conseq || lives == Q) a2.mat[mapper[lives][conseq]][stat_siz] = conseq; for (int i = 1; i <= mat_siz; i++) a2.mat[i][i] = 1; b = a1 * a2; f.mat[1][mapper[Q][0]] = 1; int tim = N; while (tim) { if (tim & 1) f = f * b; b = b * b; tim >>= 1; } return f.mat[1][stat_siz]; } int main() { scanf("%d%d%d%lld", &N, &R, &Q, &S); // zip the status up! for (int lives = 0; lives <= Q; lives++) for (int conseq = 0; conseq <= R; conseq++) if (lives >= conseq || lives == Q) mapper[lives][conseq] = ++stat_siz; // as the end status; ++stat_siz, mat_siz = stat_siz; if (DP(1.0) <= S) puts("Impossible."); else { double l = 0, r = 1.0; while (l < r - eps) { double mid = (l + r) / 2; if (DP(mid) > S) r = mid; else l = mid; } printf("%.6lf", l); } return 0; }
C – Bomb
这也是一道思维上的好题目。
最大贡献的求法
我们先求最大的三点距离和。发现三个点\((x_1, y_1), (x_2, y_2), (x_3, y_3)\)最后对答案的贡献形如(长得像):
\[ \frac{answer}{2} = \begin{cases} x_1 + y_1 – x_2 – y_3 \\ x_1 + y_1 – x_3 – y_3 \end{cases} \]
所以我们只需要维护最大最小的\(x, y\),和最大最小的\(x + y, x – y\)就行了。
最小贡献的求法
这个就相对难了很多了。我们发现,这道题的数据范围大概可以过\(O(n \log n)\)或者是\(O(n)\),而时间是 4s。所以我们可以考虑\(O(n \log n)\)的方式。考虑将整个点序列按\(x\)为关键字进行排序,然后上 CDQ 分治。在这里,CDQ 分治有个好处:区间长度小的时候直接暴力\(O(n^3)\),比较好写;区间长了之后,那么再次筛选点集进行暴力的时候,因为区间长度小的已经对答案进行了贡献,所以小区间按\(y\)排序之后可能成为答案的点数非常的少,所以也是符合综合复杂度的。具体见代码。
代码
// C.cpp #include <bits/stdc++.h> using namespace std; const int MAX_N = 101000; int n, ans = 0x3f3f3f3f; struct point { int x, y; bool operator<(const point &pt) const { return y < pt.y || (y == pt.y && x < pt.x); } } pts[MAX_N], tmp[MAX_N]; bool compareByY(const point &pt1, const point &pt2) { return pt1.x < pt2.x || (pt1.x == pt2.x && pt1.y < pt2.y); } int get(point A, point B, point C) { return max(A.x, max(B.x, C.x)) - min(A.x, min(B.x, C.x)) + max(A.y, max(B.y, C.y)) - min(A.y, min(B.y, C.y)); } void solve(int l, int r) { if (r - l < 15) { // brute force; for (int i = l; i <= r; i++) for (int j = i + 1; j <= r; j++) for (int k = j + 1; k <= r; k++) ans = min(ans, get(pts[i], pts[j], pts[k])); return; } int mid = (l + r) >> 1, tot = 0; solve(l, mid), solve(mid, r); for (int i = mid; i <= r; i++) if (ans > abs(pts[i].x - pts[mid].x)) tmp[++tot] = pts[i]; else break; for (int i = mid - 1; i >= l; i--) if (ans > abs(pts[i].x - pts[mid].x)) tmp[++tot] = pts[i]; else break; sort(tmp + 1, tmp + 1 + tot); for (int rig = 3, lft = 1; rig <= tot; rig++) { while (abs(tmp[rig].y - tmp[lft].y) >= ans) lft++; for (int i = lft; i < rig; i++) for (int j = i + 1; j < rig; j++) ans = min(ans, get(tmp[rig], tmp[i], tmp[j])); } } int main() { scanf("%d", &n); // largest module; int xmin, ymin, xmax, ymax, xpymax, xpymin, xmymax, xmymin; xmin = ymin = xpymin = xmymin = 1 << 30; xmax = ymax = xpymax = xmymax = -(1 << 30); for (int i = 1, x, y; i <= n; i++) { scanf("%d%d", &x, &y), swap(x, y); pts[i].x = x, pts[i].y = y; xmin = min(xmin, x), xmax = max(xmax, x); ymax = max(ymax, y), ymin = min(ymin, y); xpymax = max(xpymax, x + y), xpymin = min(xpymin, x + y); xmymax = max(xmymax, (x - y)), xmymin = min(xmymin, (x - y)); } printf("%d\n", 2 * max(max(xpymax - xmin - ymin, xmax + ymax - xpymin), max(xmymax - xmin + ymax, xmax - xmymin - ymin))); // using the CDQ Division And Conquerence; sort(pts + 1, pts + 1 + n, compareByY); solve(1, n); printf("%d", 2 * ans); return 0; }