主要思路
这道题我一开始写的是纯暴力,然后卡在了第 6 个点上失败。在看题解之前就已经感觉到这应该跟数学有关系。我先大概地说明主要方法,在数字输入时用数组\(dp2[][]和dp5[][]\)来记录这个数字包含因子\(2\)的个数和因子\(5\)的个数,然后尾部\(0\)的个数是\(min\{numOf(2),numOf(5)\}\)。然后我们可以分开进行处理,可以先处理\(dp2[][]\)数组并记录路径数组\(f2[][]\),之后处理\(dp2[][]和f5[][]\)。统计答案时只需要比较\(dp2[n][n]和dp5[n][n]\),回溯\(f2[][]或f5[][]\)即可。
但是还有一种情况,那就是数字矩阵包括\(0\)的情况。我们可以考虑在预处理的时候记录下数字\(0\)的坐标,最后只要\(min\{dp2[n][n],dp5[n][n]\}>1\),就证明\(0\)才是最优解。
代码
// CF2B.cpp #include <iostream> #include <cstring> #include <cstdio> #define ll long long using namespace std; const int MX_N = 1010; ll mat[MX_N][MX_N], dp2[MX_N][MX_N], dp5[MX_N][MX_N], pow2[25], pow5[25], n, zeroFlag, zeroX, zeroY; char ans[MX_N << 1]; struct vec { ll x, y; } f2[MX_N][MX_N], f5[MX_N][MX_N]; void preprocess() { for (int i = 0; i < 25; i++) pow2[i] = 1 << i; pow5[0] = 1; for (int i = 1; i < 25; i++) pow5[i] = pow5[i - 1] * 5; } void processDp() { // start to program dynamically; for (int i = 2; i <= n; i++) dp2[0][i] = dp2[i][0] = dp5[0][i] = dp5[i][0] = 2e9; for (int i = 1; i <= n; i++) for (int j = 1; j <= n; j++) { ll vald = dp2[i - 1][j], valr = dp2[i][j - 1]; dp2[i][j] += min(vald, valr); if (vald < valr) f2[i][j] = vec{i - 1, j}; else f2[i][j] = vec{i, j - 1}; } for (int i = 1; i <= n; i++) for (int j = 1; j <= n; j++) { ll vald = dp5[i - 1][j], valr = dp5[i][j - 1]; dp5[i][j] += min(vald, valr); if (vald < valr) f5[i][j] = vec{i - 1, j}; else f5[i][j] = vec{i, j - 1}; } } int main() { scanf("%lld", &n); preprocess(); for (int i = 1; i <= n; i++) for (int j = 1; j <= n; j++) { scanf("%lld", &mat[i][j]); if (mat[i][j] == 0) { zeroFlag = true, zeroX = i, zeroY = j; continue; } int tmp = mat[i][j]; for (int k = 24; k >= 0; k--) if (tmp % pow2[k] == 0) dp2[i][j] += k, tmp /= pow2[k]; if (tmp % 2 == 0) dp2[i][j]++; tmp = mat[i][j]; for (int k = 24; k >= 0; k--) if (tmp % pow5[k] == 0) dp5[i][j] += k, tmp /= pow5[k]; if (tmp % 5 == 0) dp2[i][j]++; } processDp(); // process the answer; if (zeroFlag && min(dp2[n][n], dp5[n][n]) > 1) { puts("1"); for (int i = 2; i <= zeroX; i++) putchar('D'); for (int j = 2; j <= zeroY; j++) putchar('R'); for (int i = zeroX + 1; i <= n; i++) putchar('D'); for (int j = zeroY + 1; j <= n; j++) putchar('R'); return 0; } // secondary answer; printf("%d\n", min(dp2[n][n], dp5[n][n])); int cx = n, cy = n, tot = 0; for (int counter = 1; counter <= 2 * n - 1; counter++) { int fx = f2[cx][cy].x, fy = f2[cx][cy].y; if (dp2[n][n] > dp5[n][n]) fx = f5[cx][cy].x, fy = f5[cx][cy].y; if (cx > fx) ans[counter] = 'D'; else ans[counter] = 'R'; cx = fx, cy = fy; } for (int i = 2 * n - 2; i >= 1; i--) printf("%c", ans[i]); return 0; }