主要思路
我们考虑每一个点被删掉的情景,对于点\(i\),它只能被深度小于等于点\(i\)的点操作后删除,概率为\(\frac{1}{dep[i]}\),每删掉一个节点的代价是\(1\),所以答案为\(\sum_{i=1}^{n} \frac{1}{dep[i]}\)
代码
// CF280C.cpp
#include <bits/stdc++.h>
using namespace std;
const int MAX_N = 1e5 + 100;
int head[MAX_N], current, n, tmpx, tmpy;
double ans = 0;
struct edge
{
int to, nxt;
} edges[MAX_N << 1];
void addpath(int u, int v)
{
edges[current].to = v, edges[current].nxt = head[u];
head[u] = current++;
}
void dfs(int u, int fa, int dep)
{
ans += 1.0 / dep;
for(int i = head[u]; i != -1; i = edges[i].nxt)
if(edges[i].to != fa)
dfs(edges[i].to, u, dep + 1);
}
int main()
{
memset(head, -1, sizeof(head));
scanf("%d", &n);
for(int i = 1; i <= n - 1; i++)
scanf("%d%d", &tmpx, &tmpy), addpath(tmpx, tmpy), addpath(tmpy, tmpx);
dfs(1, 0, 1);
printf("%.20lf", ans);
return 0;
}