解法
这道题还是挺神仙的,式子比较好推但是高斯消元部分有点麻烦。
首先我们枚举终点\(t\),设状态\(f[i][j]\)为人在\(i,j\)时转移到\(t\)的概率。考虑下面的式子:
\[ dp[i][j] = dp[i][j] * p_i * p_j + \sum_{(i, u)} dp[u][j] * \frac{1-p_i}{deg_i} * p_j + \sum_{(j, u)} dp[i][u] * \frac{1-p_j}{deg_j} * p_i + \sum_{(i, u)} \sum_{(j, v)} dp[u][v] * \frac{1-p_i}{deg_i} * \frac{1-p_j}{deg_j} \]
由于这玩意没法搞出一个合理的转移顺序,所以最好列方程组求解,进行高斯消元。这一共有\(n^2 – n\)个方程(有\(n\)个\((i,i)\)可视作常数)。注意代码的一些细节。
代码
// CF113D.cpp #include <bits/stdc++.h> using namespace std; const int MAX_N = 23, MAX_N2 = MAX_N * MAX_N; bool mp[MAX_N][MAX_N], fact[MAX_N]; int n, m, deg[MAX_N], id[MAX_N][MAX_N], sa, sb, mx; double pi[MAX_N], mat[MAX_N2][MAX_N2], f[MAX_N], answers[MAX_N]; void fillNode(int x, int y) { int pos = id[x][y]; mat[pos][pos] = pi[x] * pi[y] - 1.0; for (int i = 1; i <= n; i++) { if (mp[x][i]) if (i != y) mat[pos][id[i][y]] += f[x] * pi[y]; else mat[pos][mx + 1] -= f[x] * pi[y] * fact[y]; if (mp[i][y]) if (i != x) mat[pos][id[x][i]] += f[y] * pi[x]; else mat[pos][mx + 1] -= f[y] * pi[x] * fact[x]; for (int j = 1; j <= n; j++) { if (mp[i][x] && mp[j][y]) if (i != j) mat[pos][id[i][j]] += f[x] * f[y]; else mat[pos][mx + 1] -= f[x] * f[y] * fact[j]; } } } double solveCases() { for (int i = 1; i <= mx; i++) { int pos = i; for (int j = i + 1; j <= mx; j++) if (fabs(mat[j][i]) > fabs(mat[pos][i])) pos = j; if (pos != i) for (int j = 1; j <= mx + 1; j++) swap(mat[i][j], mat[pos][j]); for (int j = i + 1; j <= mx; j++) { double tmp = mat[j][i] / mat[i][i]; for (int k = i; k <= mx + 1; k++) mat[j][k] -= mat[i][k] * tmp; } } for (int i = mx; i >= 1; i--) { for (int j = mx; j > i; j--) mat[i][mx + 1] -= mat[i][j] * mat[j][mx + 1]; mat[i][mx + 1] /= mat[i][i]; } return mat[id[sa][sb]][mx + 1]; } double solve(int dst) { memset(mat, 0, sizeof(mat)); memset(fact, 0, sizeof(fact)); fact[dst] = 1; for (int i = 1; i <= n; i++) for (int j = 1; j <= n; j++) if (i != j) fillNode(i, j); return solveCases(); } int main() { scanf("%d%d%d%d", &n, &m, &sa, &sb); for (int i = 1; i <= m; i++) { int x, y; scanf("%d%d", &x, &y), mp[x][y] = mp[y][x] = true; deg[x]++, deg[y]++; } if (sa == sb) { for (int i = 1; i <= n; i++) if (i == sa) printf("%.10lf ", 1.0); else printf("%.10lf ", 0.0); return 0; } for (int i = 1; i <= n; i++) scanf("%lf", &pi[i]), f[i] = (1.0 - pi[i]) / (1.0 * deg[i]); for (int i = 1; i <= n; i++) for (int j = 1; j <= n; j++) if (i != j) id[i][j] = ++mx; for (int i = 1; i <= n; i++) printf("%.10lf ", solve(i)); return 0; }