解线性方程组
void gauss(int tot) { for (int i = 1; i <= tot; i++) { int idx = i; for (int j = i + 1; j <= tot; j++) if (fabs(mat[j][i]) > fabs(mat[idx][i])) idx = j; if (idx != i) for (int j = i; j <= tot + 1; j++) swap(mat[i][j], mat[idx][j]); for (int j = 1; j <= tot; j++) if (i != j) { double rate = mat[j][i] / mat[i][i]; for (int k = i; k <= tot + 1; k++) mat[j][k] -= rate * mat[i][k]; } } }
异或方程组
GUGUGU
矩阵求逆
// P4783.cpp #include <bits/stdc++.h> using namespace std; const int MAX_N = 440, mod = 1e9 + 7; int n, mat[MAX_N][MAX_N << 1]; int fpow(int bas, int tim) { int ret = 1; while (tim) { if (tim & 1) ret = 1LL * ret * bas % mod; bas = 1LL * bas * bas % mod; tim >>= 1; } return ret; } void gauss_inverse() { for (int i = 1; i <= n; i++) { int key = 0; for (int j = i; j <= n && key == 0; j++) if (mat[j][i] != 0) key = j; if (key != i) { if (key == 0) puts("No Solution"), exit(0); for (int j = i; j <= (n << 1); j++) swap(mat[i][j], mat[key][j]); } int inv = fpow(mat[i][i], mod - 2); for (int j = i; j <= (n << 1); j++) mat[i][j] = 1LL * mat[i][j] * inv % mod; for (int j = 1; j <= n; j++) if (i != j) { inv = mat[j][i]; for (int k = i; k <= (n << 1); k++) mat[j][k] = (0LL + mat[j][k] + mod - 1LL * inv * mat[i][k] % mod) % mod; } } } int main() { scanf("%d", &n); for (int i = 1; i <= n; i++) { mat[i][n + i] = 1; for (int j = 1; j <= n; j++) scanf("%d", &mat[i][j]); } gauss_inverse(); for (int i = 1; i <= n; i++, puts("")) for (int j = n + 1; j <= (n << 1); j++) printf("%d ", mat[i][j]); return 0; }
多项式插值
具体见:https://kalorona.com/oi/fortuna-oj-pa-apr-19/
求行列式
int gauss() { int res = 1; for (int i = 0; i < n - 1; i++) { int key = i; for (int j = i; j < n - 1; j++) if (mat[j][i] != 0) { key = j; break; } if (key != i) { res = mod - res; for (int j = i; j < n - 1; j++) swap(mat[i][j], mat[key][j]); } int inv = fpow(mat[i][i], mod - 2); for (int j = i + 1; j < n - 1; j++) { int rate = 1LL * mat[j][i] * inv % mod; for (int k = i; k < n - 1; k++) mat[j][k] = (0LL + mat[j][k] + mod - 1LL * rate * mat[i][k] % mod) % mod; } } for (int i = 0; i < n - 1; i++) res = 1LL * res * mat[i][i] % mod; return res; }