主要思路
这是道好题,运用了图论建模的方法,可谓是十分精妙了。
对于每一个\(i\)与\(arr[i]\)都连一条有向边,比如说数列\(2\ 1\ 4\ 3\):
可以通过 DFS 染色的方式找出\(k\)个环,并且将每个环的长度记为\(l_i\)。我们可以得出一个引理:
在图中,对于长度为\(n\)的环,将其变为自环的最小步骤为\(n-1\)。
就是这样的性质,我们可以记\(F[i]\)为当环长为\(i\)时变为自环的方案数,那么我们可以基于分裂的思想,设\(T(x,y)\)为当环长为\(x+y\)时分裂为环长分别为\(x,y\)时的方案数,显然:
\[T(x,y) = \begin{cases} \frac{n}{2}, x = y \\ n, x \neq y \end{cases}\]
所以,我们可以照例推出:
\[ F[i] = \sum_{x+y=i} T(x,y)*F[x]*F[y]*\frac{(n-2)!}{(x-1)!(y-1)!} \]
我来解释一下这个式子的意义:首先,枚举\(x\)和\(y\)的情况,然后乘上这两个本身变成自环的方案数,也就是\(F[x]*F[y]\),之后根据多重集排列公式和上面那个引理,两者步数分别为\(x-1,y-1\),所以也不难得出上面那一坨了。
答案为\(\prod_{i = 1}^k {F_{l_i}} * \frac{(n-k)!}{\prod_{i = 1}^{k}(l_i-1)}\),时间复杂度为\(O(n^2)\),然而通过人类智慧等方法,发现\(F[n]=n^{n-2}\),所以通过快速幂降为\(O(n \log n)\)。
代码
// CH3602.cpp #include <bits/stdc++.h> #define ll long long using namespace std; const int MAX_N = 1e5 + 200, mod = 1e9 + 9; int T, n, arr[MAX_N], head[MAX_N], current, k, li[MAX_N], vis[MAX_N]; ll level[MAX_N], inv[MAX_N]; struct edge { int to, nxt; } edges[MAX_N << 1]; void addpath(int src, int dst) { edges[current].to = dst, edges[current].nxt = head[src]; head[src] = current++; } int dfs(int u, int fa) { vis[u] = true; for (int i = head[u]; i != -1; i = edges[i].nxt) if (edges[i].to != fa) { if (vis[edges[i].to]) return 1; return dfs(edges[i].to, u) + 1; } return 1; } ll quick_power(ll bas, ll tim) { ll ans = 1; while (tim) { if (tim & 1) ans = ans * bas % mod; bas = bas * bas % mod; tim >>= 1; } return ans; } ll Fn(int n) { return (n == 1) ? 1 : quick_power(n, n - 2); } int main() { scanf("%d", &T); level[0] = inv[0] = 1; for (int i = 1; i < MAX_N; i++) level[i] = level[i - 1] * i % mod; inv[MAX_N - 1] = quick_power(level[MAX_N - 1], mod - 2); for (int i = MAX_N - 1; i >= 2; i--) inv[i - 1] = inv[i] * i % mod; while (T--) { memset(head, -1, sizeof(head)), current = 0; memset(li, 0, sizeof(li)), k = 0; memset(vis, 0, sizeof(vis)); scanf("%d", &n); for (int i = 1; i <= n; i++) scanf("%d", &arr[i]), addpath(arr[i], i), addpath(i, arr[i]); for (int i = 1; i <= n; i++) if (!vis[i]) li[++k] = dfs(i, 0); ll ans = 1; for (int i = 1; i <= k; i++) ans = ans * Fn(li[i]) % mod; ans = (ans * level[n - k] % mod); for (int i = 1; i <= k; i++) ans = ans * inv[li[i] - 1] % mod; printf("%lld\n", ans); continue; } return 0; }