A – Elections
直接做不太好做,很懵逼。可以考虑枚举 CCP 得到的票数,然后再从各大党派中各抢一张票。如果不够抢就直接抢最小的票。这样取 min 即可。
直接做不太好做,很懵逼。可以考虑枚举 CCP 得到的票数,然后再从各大党派中各抢一张票。如果不够抢就直接抢最小的票。这样取 min 即可。
优美的神仙操作,爱了爱了。
把原式抄下来:
\[ \begin{equation} \sum_{j = 1}^{n} \gcd(i, j)^c \cdot \text{lcm}(i, j)^d \cdot x_j \equiv b_i \pmod{p} \end{equation} \]
自己推了三个假的循环,遂奔向题解。
先考虑设循环节为 \(k\),且考虑最终 \(x = 0, y = 0\) 的局势。我们考虑怎样的循环节才能迭代一次、得到同样的 \(x = 0, y = 0\) 的局势。不妨直接带入 \(k\):
\[ x = (k + \lfloor \frac{k}{B} \rfloor) \bmod A, y = k \bmod B \]
容斥好题!
我们先不考虑 \(k\) 个非法向量的事。先考虑分两维做掉那个跳跃限制,再做掉不动的情况。
对于一维的跳跃限制,以 \(x\) 轴为例,可以做成一个组合数的容斥:
\[ \text{设} f(i) \text{为至少有} i \text{步超过了跳跃限制} \\ f(i) = {R \choose i} {T_x – i(Mx + 1) + R – 1 \choose R – 1} \\ ans_x = \sum_{i = 0}^R (-1)^i f(i) \]
神仙题啊,灵活运用线段树和贪心的好题。首先一个显然的性质:\(X\) 串的 \(\max\) 序列是原串 \(\max\) 序列的前缀串。知道这个之后我们可以开始构造。