主要思路
我这个傻逼还搞个多重集容斥恶心自己。
首先分析题意,不难想出转移方程:
\[ dp[i][j] = dp[i-1][j]+\sum_{k = limit[i]}^{j} dp[i-1][k] \]
然后考虑用\(O(n)\)的时间先预处理出前缀和\(dp[i-1][k-1]\),然后大的减小的\(O(1)\)查询即可。
代码
// M.cpp
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int MAX_N = 110, MAX_K = 1e5 + 200, MOD = 1e9 + 7;
ll n, limit[MAX_N], dp[MAX_N][MAX_K], k, mxk, prefix[MAX_K];
int main()
{
scanf("%lld%lld", &n, &k);
for (int i = 1; i <= n; i++)
scanf("%lld", &limit[i]), dp[i][0] = 1;
dp[0][0] = 1;
for (int i = 1; i <= n; i++)
{
prefix[i] = 0;
for (int j = 1; j <= k + 1; j++)
prefix[j] = prefix[j - 1] + dp[i - 1][j - 1];
for (int j = 1; j <= k; j++)
{
dp[i][j] = dp[i - 1][j] + prefix[j] - prefix[max(0LL, j - limit[i])];
dp[i][j] %= MOD;
}
}
printf("%d", dp[n][k]);
return 0;
}
// M.cpp
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int MAX_N = 110, MAX_K = 1e5 + 200, MOD = 1e9 + 7;
ll n, limit[MAX_N], dp[MAX_N][MAX_K], k, mxk, prefix[MAX_K];
int main()
{
scanf("%lld%lld", &n, &k);
for (int i = 1; i <= n; i++)
scanf("%lld", &limit[i]), dp[i][0] = 1;
dp[0][0] = 1;
for (int i = 1; i <= n; i++)
{
prefix[i] = 0;
for (int j = 1; j <= k + 1; j++)
prefix[j] = prefix[j - 1] + dp[i - 1][j - 1];
for (int j = 1; j <= k; j++)
{
dp[i][j] = dp[i - 1][j] + prefix[j] - prefix[max(0LL, j - limit[i])];
dp[i][j] %= MOD;
}
}
printf("%d", dp[n][k]);
return 0;
}
// M.cpp #include <bits/stdc++.h> #define ll long long using namespace std; const int MAX_N = 110, MAX_K = 1e5 + 200, MOD = 1e9 + 7; ll n, limit[MAX_N], dp[MAX_N][MAX_K], k, mxk, prefix[MAX_K]; int main() { scanf("%lld%lld", &n, &k); for (int i = 1; i <= n; i++) scanf("%lld", &limit[i]), dp[i][0] = 1; dp[0][0] = 1; for (int i = 1; i <= n; i++) { prefix[i] = 0; for (int j = 1; j <= k + 1; j++) prefix[j] = prefix[j - 1] + dp[i - 1][j - 1]; for (int j = 1; j <= k; j++) { dp[i][j] = dp[i - 1][j] + prefix[j] - prefix[max(0LL, j - limit[i])]; dp[i][j] %= MOD; } } printf("%d", dp[n][k]); return 0; }