主要思路
我们考虑每一个点被删掉的情景,对于点\(i\),它只能被深度小于等于点\(i\)的点操作后删除,概率为\(\frac{1}{dep[i]}\),每删掉一个节点的代价是\(1\),所以答案为\(\sum_{i=1}^{n} \frac{1}{dep[i]}\)
代码
// CF280C.cpp #include <bits/stdc++.h> using namespace std; const int MAX_N = 1e5 + 100; int head[MAX_N], current, n, tmpx, tmpy; double ans = 0; struct edge { int to, nxt; } edges[MAX_N << 1]; void addpath(int u, int v) { edges[current].to = v, edges[current].nxt = head[u]; head[u] = current++; } void dfs(int u, int fa, int dep) { ans += 1.0 / dep; for(int i = head[u]; i != -1; i = edges[i].nxt) if(edges[i].to != fa) dfs(edges[i].to, u, dep + 1); } int main() { memset(head, -1, sizeof(head)); scanf("%d", &n); for(int i = 1; i <= n - 1; i++) scanf("%d%d", &tmpx, &tmpy), addpath(tmpx, tmpy), addpath(tmpy, tmpx); dfs(1, 0, 1); printf("%.20lf", ans); return 0; }