Loading [MathJax]/extensions/tex2jax.js

高斯消元

解线性方程组

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
void gauss(int tot)
{
for (int i = 1; i <= tot; i++)
{
int idx = i;
for (int j = i + 1; j <= tot; j++)
if (fabs(mat[j][i]) > fabs(mat[idx][i]))
idx = j;
if (idx != i)
for (int j = i; j <= tot + 1; j++)
swap(mat[i][j], mat[idx][j]);
for (int j = 1; j <= tot; j++)
if (i != j)
{
double rate = mat[j][i] / mat[i][i];
for (int k = i; k <= tot + 1; k++)
mat[j][k] -= rate * mat[i][k];
}
}
}
void gauss(int tot) { for (int i = 1; i <= tot; i++) { int idx = i; for (int j = i + 1; j <= tot; j++) if (fabs(mat[j][i]) > fabs(mat[idx][i])) idx = j; if (idx != i) for (int j = i; j <= tot + 1; j++) swap(mat[i][j], mat[idx][j]); for (int j = 1; j <= tot; j++) if (i != j) { double rate = mat[j][i] / mat[i][i]; for (int k = i; k <= tot + 1; k++) mat[j][k] -= rate * mat[i][k]; } } }
void gauss(int tot)
{
    for (int i = 1; i <= tot; i++)
    {
        int idx = i;
        for (int j = i + 1; j <= tot; j++)
            if (fabs(mat[j][i]) > fabs(mat[idx][i]))
                idx = j;
        if (idx != i)
            for (int j = i; j <= tot + 1; j++)
                swap(mat[i][j], mat[idx][j]);
        for (int j = 1; j <= tot; j++)
            if (i != j)
            {
                double rate = mat[j][i] / mat[i][i];
                for (int k = i; k <= tot + 1; k++)
                    mat[j][k] -= rate * mat[i][k];
            }
    }
}

异或方程组

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
GUGUGU
GUGUGU
GUGUGU

矩阵求逆

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// P4783.cpp
#include <bits/stdc++.h>
using namespace std;
const int MAX_N = 440, mod = 1e9 + 7;
int n, mat[MAX_N][MAX_N << 1];
int fpow(int bas, int tim)
{
int ret = 1;
while (tim)
{
if (tim & 1)
ret = 1LL * ret * bas % mod;
bas = 1LL * bas * bas % mod;
tim >>= 1;
}
return ret;
}
void gauss_inverse()
{
for (int i = 1; i <= n; i++)
{
int key = 0;
for (int j = i; j <= n && key == 0; j++)
if (mat[j][i] != 0)
key = j;
if (key != i)
{
if (key == 0)
puts("No Solution"), exit(0);
for (int j = i; j <= (n << 1); j++)
swap(mat[i][j], mat[key][j]);
}
int inv = fpow(mat[i][i], mod - 2);
for (int j = i; j <= (n << 1); j++)
mat[i][j] = 1LL * mat[i][j] * inv % mod;
for (int j = 1; j <= n; j++)
if (i != j)
{
inv = mat[j][i];
for (int k = i; k <= (n << 1); k++)
mat[j][k] = (0LL + mat[j][k] + mod - 1LL * inv * mat[i][k] % mod) % mod;
}
}
}
int main()
{
scanf("%d", &n);
for (int i = 1; i <= n; i++)
{
mat[i][n + i] = 1;
for (int j = 1; j <= n; j++)
scanf("%d", &mat[i][j]);
}
gauss_inverse();
for (int i = 1; i <= n; i++, puts(""))
for (int j = n + 1; j <= (n << 1); j++)
printf("%d ", mat[i][j]);
return 0;
}
// P4783.cpp #include <bits/stdc++.h> using namespace std; const int MAX_N = 440, mod = 1e9 + 7; int n, mat[MAX_N][MAX_N << 1]; int fpow(int bas, int tim) { int ret = 1; while (tim) { if (tim & 1) ret = 1LL * ret * bas % mod; bas = 1LL * bas * bas % mod; tim >>= 1; } return ret; } void gauss_inverse() { for (int i = 1; i <= n; i++) { int key = 0; for (int j = i; j <= n && key == 0; j++) if (mat[j][i] != 0) key = j; if (key != i) { if (key == 0) puts("No Solution"), exit(0); for (int j = i; j <= (n << 1); j++) swap(mat[i][j], mat[key][j]); } int inv = fpow(mat[i][i], mod - 2); for (int j = i; j <= (n << 1); j++) mat[i][j] = 1LL * mat[i][j] * inv % mod; for (int j = 1; j <= n; j++) if (i != j) { inv = mat[j][i]; for (int k = i; k <= (n << 1); k++) mat[j][k] = (0LL + mat[j][k] + mod - 1LL * inv * mat[i][k] % mod) % mod; } } } int main() { scanf("%d", &n); for (int i = 1; i <= n; i++) { mat[i][n + i] = 1; for (int j = 1; j <= n; j++) scanf("%d", &mat[i][j]); } gauss_inverse(); for (int i = 1; i <= n; i++, puts("")) for (int j = n + 1; j <= (n << 1); j++) printf("%d ", mat[i][j]); return 0; }
// P4783.cpp
#include <bits/stdc++.h>

using namespace std;

const int MAX_N = 440, mod = 1e9 + 7;

int n, mat[MAX_N][MAX_N << 1];

int fpow(int bas, int tim)
{
    int ret = 1;
    while (tim)
    {
        if (tim & 1)
            ret = 1LL * ret * bas % mod;
        bas = 1LL * bas * bas % mod;
        tim >>= 1;
    }
    return ret;
}

void gauss_inverse()
{
    for (int i = 1; i <= n; i++)
    {
        int key = 0;
        for (int j = i; j <= n && key == 0; j++)
            if (mat[j][i] != 0)
                key = j;
        if (key != i)
        {
            if (key == 0)
                puts("No Solution"), exit(0);
            for (int j = i; j <= (n << 1); j++)
                swap(mat[i][j], mat[key][j]);
        }
        int inv = fpow(mat[i][i], mod - 2);
        for (int j = i; j <= (n << 1); j++)
            mat[i][j] = 1LL * mat[i][j] * inv % mod;
        for (int j = 1; j <= n; j++)
            if (i != j)
            {
                inv = mat[j][i];
                for (int k = i; k <= (n << 1); k++)
                    mat[j][k] = (0LL + mat[j][k] + mod - 1LL * inv * mat[i][k] % mod) % mod;
            }
    }
}

int main()
{
    scanf("%d", &n);
    for (int i = 1; i <= n; i++)
    {
        mat[i][n + i] = 1;
        for (int j = 1; j <= n; j++)
            scanf("%d", &mat[i][j]);
    }
    gauss_inverse();
    for (int i = 1; i <= n; i++, puts(""))
        for (int j = n + 1; j <= (n << 1); j++)
            printf("%d ", mat[i][j]);
    return 0;
}

多项式插值

具体见:https://kalorona.com/oi/fortuna-oj-pa-apr-19/

求行列式

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
int gauss()
{
int res = 1;
for (int i = 0; i < n - 1; i++)
{
int key = i;
for (int j = i; j < n - 1; j++)
if (mat[j][i] != 0)
{
key = j;
break;
}
if (key != i)
{
res = mod - res;
for (int j = i; j < n - 1; j++)
swap(mat[i][j], mat[key][j]);
}
int inv = fpow(mat[i][i], mod - 2);
for (int j = i + 1; j < n - 1; j++)
{
int rate = 1LL * mat[j][i] * inv % mod;
for (int k = i; k < n - 1; k++)
mat[j][k] = (0LL + mat[j][k] + mod - 1LL * rate * mat[i][k] % mod) % mod;
}
}
for (int i = 0; i < n - 1; i++)
res = 1LL * res * mat[i][i] % mod;
return res;
}
int gauss() { int res = 1; for (int i = 0; i < n - 1; i++) { int key = i; for (int j = i; j < n - 1; j++) if (mat[j][i] != 0) { key = j; break; } if (key != i) { res = mod - res; for (int j = i; j < n - 1; j++) swap(mat[i][j], mat[key][j]); } int inv = fpow(mat[i][i], mod - 2); for (int j = i + 1; j < n - 1; j++) { int rate = 1LL * mat[j][i] * inv % mod; for (int k = i; k < n - 1; k++) mat[j][k] = (0LL + mat[j][k] + mod - 1LL * rate * mat[i][k] % mod) % mod; } } for (int i = 0; i < n - 1; i++) res = 1LL * res * mat[i][i] % mod; return res; }
int gauss()
{
    int res = 1;
    for (int i = 0; i < n - 1; i++)
    {
        int key = i;
        for (int j = i; j < n - 1; j++)
            if (mat[j][i] != 0)
            {
                key = j;
                break;
            }
        if (key != i)
        {
            res = mod - res;
            for (int j = i; j < n - 1; j++)
                swap(mat[i][j], mat[key][j]);
        }
        int inv = fpow(mat[i][i], mod - 2);
        for (int j = i + 1; j < n - 1; j++)
        {
            int rate = 1LL * mat[j][i] * inv % mod;
            for (int k = i; k < n - 1; k++)
                mat[j][k] = (0LL + mat[j][k] + mod - 1LL * rate * mat[i][k] % mod) % mod;
        }
    }
    for (int i = 0; i < n - 1; i++)
        res = 1LL * res * mat[i][i] % mod;
    return res;
}

Leave a Reply

Your email address will not be published. Required fields are marked *