A – 道路铺设
这道题考场上神智不清,敲了个线段树拿了满分(当然不用这么复杂)。以下是考场代码。
// road.cpp
// NOIp rp++;
#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
const int maxn= 100200;
const int INF = 1e9 + 1e8;
// segment tree;
int arr[maxn],tree[maxn*4],treeid[maxn*4],n;
void build(int l, int r, int node)
{
if(l == r)
{
tree[node] = arr[l];
treeid[node] = l;
return;
}
int mid = (l+r)>>1;
if(l<=mid)
build(l,mid,2*node);
if(mid<r)
build(mid+1,r,2*node+1);
if(tree[2*node]<tree[2*node+1])
treeid[node] = treeid[2*node];
else
treeid[node] = treeid[2*node+1];
tree[node] = min(tree[2*node], tree[2*node+1]);
}
void update(int ql, int qr, int l, int r, int node, int c)
{
if(l == r)
{
tree[node] += c;
treeid[node] = l;
return;
}
int mid = (l+r)>>1;
if(ql<=mid)
update(ql,qr,l,mid,2*node,c);
if(mid<qr)
update(ql,qr,mid+1,r,2*node+1,c);
if(tree[2*node]<tree[2*node+1])
treeid[node] = treeid[2*node];
else
treeid[node] = treeid[2*node+1];
tree[node] = min(tree[2*node], tree[2*node+1]);
}
struct result
{
int val,id;
result(){
}
result(int v, int i)
{
val = v;
id = i;
}
bool operator<(const result& t)const
{
return val<t.val;
}
};
result getMin(int ql, int qr, int l, int r, int node)
{
if(ql<=l && r<=qr)
return result(tree[node],treeid[node]);
int mid = (l+r)>>1;
result val = result(INF,0);
if(ql<=mid)
val = min(val, getMin(ql,qr,l,mid,2*node));
if(mid<qr)
val = min(val, getMin(ql,qr,mid+1,r,2*node+1));
return val;
}
long long ans = 0;
void solve(int l, int r)
{
result minres = getMin(l,r,1,n,1);
int min_val = minres.val;
ans += min_val;
if(min_val!=0)
update(l,r,1,n,1,-min_val);
if(l == r && min_val == 0)
return;
int mid = minres.id;
if(l<mid)
solve(l,mid-1);
if(mid<r)
solve(mid+1,r);
}
// segment tree OK!
int main()
{
scanf("%d", &n);
for(int i = 1;i<=n;i++)
scanf("%d",&arr[i]);
build(1,n,1);
solve(1,n);
printf("%lld",ans);
return 0;
}
B – 货币系统
sb 背包,先排序保证用小的换大的。
// P5020.cpp
#include <bits/stdc++.h>
using namespace std;
const int MAX_N = 110, MAX_DOM = 25010;
int T, n, ai[MAX_N];
bool dp[MAX_DOM];
int main()
{
scanf("%d", &T);
while (T--)
{
scanf("%d", &n);
for (int i = 1; i <= n; i++)
scanf("%d", &ai[i]);
sort(ai + 1, ai + 1 + n);
memset(dp, false, sizeof(dp)), dp[0] = true;
int cnt = 0;
for (int i = 1; i <= n; i++)
{
if (dp[ai[i]] == true)
continue;
cnt++;
for (int j = 0; j < MAX_DOM; j++)
if (j >= ai[i])
dp[j] |= dp[j - ai[i]];
}
printf("%d\n", cnt);
}
return 0;
}
C – 赛道修建
其实大概的思路是可以想到的:二分出一个基准长度,然后利用这个长度去找最多有多少个链,大概就是贪心地从下面抽点,然后把不足的链拼在一起。拼的时候也要用二分,所以这个复杂度带两个\(\log\)。数据范围大概就是这样的。
// P5021.cpp
#include <bits/stdc++.h>
typedef long long ll;
using namespace std;
const int MAX_N = 50500;
int head[MAX_N], current, n, prod[MAX_N], m;
ll dist[MAX_N];
vector<ll> sons[MAX_N];
struct edge
{
int to, nxt, weight;
} edges[MAX_N << 1];
void addpath(int src, int dst, int weight)
{
edges[current].to = dst, edges[current].nxt = head[src];
edges[current].weight = weight, head[src] = current++;
}
int getPairs(int u, int mid, int tot, ll limit)
{
int ret = 0;
for (int r = tot - 1, l = 0; r >= 1; r--)
{
r -= (r == mid);
while (l < r && sons[u][l] + sons[u][r] < limit)
l++;
l += (l == mid);
if (l >= r)
break;
ret++, l++;
}
return ret;
}
void dfs(int u, int fa, ll limit)
{
dist[u] = prod[u] = 0;
sons[u].clear();
for (int i = head[u]; i != -1; i = edges[i].nxt)
if (edges[i].to != fa)
{
dfs(edges[i].to, u, limit);
dist[edges[i].to] += edges[i].weight;
if (dist[edges[i].to] >= limit)
prod[u]++;
else
sons[u].push_back(dist[edges[i].to]);
}
int siz = sons[u].size();
sort(sons[u].begin(), sons[u].end());
int res = 0;
for (int r = siz - 1, l = 0; r >= 1; r--)
{
while (l < r && sons[u][l] + sons[u][r] < limit)
l++;
if (l >= r)
break;
res++, l++;
}
prod[u] += res;
if ((res << 1) == siz)
return;
int l = 0, r = siz - 1, ret;
while (l <= r)
{
int mid = (l + r) >> 1;
if (getPairs(u, mid, siz, limit) == res)
ret = mid, l = mid + 1;
else
r = mid - 1;
}
dist[u] = sons[u][ret];
}
bool check(ll limit)
{
int lane_tot = 0;
dfs(1, 0, limit);
for (int i = 1; i <= n; i++)
lane_tot += prod[i];
return lane_tot >= m;
}
int main()
{
memset(head, -1, sizeof(head));
ll l = 0, r = 0, ans = 0;
scanf("%d%d", &n, &m);
for (int i = 1, u, v, w; i <= n - 1; i++)
scanf("%d%d%d", &u, &v, &w), addpath(u, v, w), addpath(v, u, w), r += w;
r /= 1LL * m;
while (l <= r)
{
int mid = (l + r) >> 1;
if (check(mid))
ans = mid, l = mid + 1;
else
r = mid - 1;
}
printf("%lld", ans);
return 0;
}
D – 旅行
sb \(O(n^2)\)随便拆边进行 DFS。太水了。
// P5022.cpp
#include <bits/stdc++.h>
using namespace std;
const int MAX_N = 5050;
int n, m, deg[MAX_N], ST, ED;
vector<int> ans, now, G[MAX_N];
void dfs(int u, int fa)
{
now.push_back(u);
for (int i = 0, siz = G[u].size(); i < siz; i++)
{
if ((ST == u && ED == G[u][i]) || (ST == G[u][i] && ED == u) || fa == G[u][i])
continue;
dfs(G[u][i], u);
}
}
bool compare()
{
if (ans.empty())
return true;
for (int i = 0; i < n; i++)
if (now[i] < ans[i])
return true;
else if (now[i] > ans[i])
return false;
return false;
}
void toposort()
{
queue<int> q;
for (int i = 1; i <= n; i++)
if (deg[i] == 1)
q.push(i);
while (!q.empty())
{
int u = q.front();
q.pop();
for (int i = 0, siz = G[u].size(); i < siz; i++)
if (--deg[G[u][i]] == 1)
q.push(G[u][i]);
}
}
int main()
{
/*
freopen("travel.in", "r", stdin);
freopen("travel.out", "w", stdout);
*/
scanf("%d%d", &n, &m);
for (int i = 1, u, v; i <= m; i++)
scanf("%d%d", &u, &v), deg[u]++, deg[v]++, G[u].push_back(v), G[v].push_back(u);
for (int i = 1; i <= n; i++)
sort(G[i].begin(), G[i].end());
if (m == n - 1)
{
dfs(1, 0);
for (int i = 0, siz = now.size(); i < siz; i++)
printf("%d ", now[i]);
return 0;
}
else
{
toposort();
for (int u = 1; u <= n; u++)
for (int i = 0, siz = G[u].size(); i < siz; i++)
if (u < G[u][i] && deg[u] > 1 && deg[G[u][i]] > 1)
{
ST = u, ED = G[u][i];
now.clear();
dfs(1, 0);
if (compare())
swap(ans, now);
}
for (int i = 0, siz = ans.size(); i < siz; i++)
printf("%d ", ans[i]);
}
return 0;
}
E – 填数游戏
写得心好痛,因为如果今年 NOIp 真考这样的神经题,真的就送掉了。我只写几个情况的:
- \(n = 1\)时,显然答案等于\(2^m\)(随便填)。
- \(n = 2\)时,答案等于\(4 \cdot 3^{m – 1} \),因为初始状态就有\(4\)种,再加上对角线不增这个性质就可以想到。
- \(n = 3\)时,找一下规律就发现等于\(122 \times 3^{m – 3}\)。
所以这道题 50 分还是比较好拿的。剩下的分基本上告辞任命。
// P5023.cpp
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int mod = 1e9 + 7;
int quick_pow(int bas, int tim)
{
int ans = 1;
while (tim)
{
if (tim & 1)
ans = 1LL * ans * bas % mod;
bas = 1LL * bas * bas % mod;
tim >>= 1;
}
return ans;
}
int main()
{
int n, m;
scanf("%d%d", &n, &m);
if (n > m)
swap(n, m);
if (n == 1)
printf("%d", quick_pow(2, m));
else if (n == 2)
// decending sequence order makes it 3 options;
printf("%lld", 4LL * quick_pow(3, m - 1) % mod);
else if (n == 3)
// What the fuck.
printf("%lld", 112LL * quick_pow(3, m - 3) % mod);
else
{
if (n == m)
printf("%lld", (83LL * quick_pow(8, n) % mod + 5LL * quick_pow(2, n + 7) % mod) * quick_pow(384, mod - 2) % mod);
else
printf("%lld", (83LL * quick_pow(8, n) % mod + quick_pow(2, n + 8) % mod) % mod * quick_pow(128, mod - 2) % mod * quick_pow(3, m - n - 1) % mod);
}
return 0;
}
F – 保卫王国
倍增 DP 的好题。50 分随便送,\(O(nm)\)搞定,剩下的分就需要对询问进行分析:考虑每次都是对链的限制,所以可以考虑额外考虑一种 DP,设状态\(f[0/1][0/1][u][v]\)表示\(u\)选不选、\(v\)选不选的情况的答案。因为这种 DP 的信息可以合并,我们不妨用倍增压缩下,然后在对两条单链进行合并(分类讨论中间的 LCA 是否选)。大概是这样,代码其实表达的也比较自然,所以就不过多解释。
// P5024.cpp
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int MAX_N = 1e5 + 200;
const ll INF = 0x3f3f3f3f3f3f3f3f;
int head[MAX_N], current, n, q, val[MAX_N], dep[MAX_N], fa[20][MAX_N], m;
ll f[2][2][20][MAX_N], dp[MAX_N][2];
char typ[10];
struct edge
{
int to, nxt;
} edges[MAX_N << 1];
void addpath(int src, int dst)
{
edges[current].to = dst, edges[current].nxt = head[src];
head[src] = current++;
}
// checked;
// at predfs(int);
void predfs(int u)
{
dep[u] = dep[fa[0][u]] + 1, dp[u][1] = val[u], f[0][0][0][u] = INF;
for (int i = 1; i <= 19; i++)
fa[i][u] = fa[i - 1][fa[i - 1][u]];
for (int i = head[u]; i != -1; i = edges[i].nxt)
if (edges[i].to != fa[0][u])
{
fa[0][edges[i].to] = u;
predfs(edges[i].to);
dp[u][0] += dp[edges[i].to][1];
dp[u][1] += min(dp[edges[i].to][0], dp[edges[i].to][1]);
}
}
void dfs(int u)
{
// not selecting the node u but the father node;
f[1][0][0][u] = dp[fa[0][u]][0] - dp[u][1];
f[0][1][0][u] = f[1][1][0][u] = dp[fa[0][u]][1] - min(dp[u][0], dp[u][1]);
// to process the chains bypassing the LCA:
for (int i = 1; (1 << i) < dep[u]; i++)
{
// merging two chains from 2 situations: mid point chosen or not;
int mid_point = fa[i - 1][u];
f[0][0][i][u] = min(f[0][0][i - 1][u] + f[0][0][i - 1][mid_point], f[0][1][i - 1][u] + f[1][0][i - 1][mid_point]);
f[0][1][i][u] = min(f[0][0][i - 1][u] + f[0][1][i - 1][mid_point], f[0][1][i - 1][u] + f[1][1][i - 1][mid_point]);
f[1][0][i][u] = min(f[1][0][i - 1][u] + f[0][0][i - 1][mid_point], f[1][1][i - 1][u] + f[1][0][i - 1][mid_point]);
f[1][1][i][u] = min(f[1][0][i - 1][u] + f[0][1][i - 1][mid_point], f[1][1][i - 1][u] + f[1][1][i - 1][mid_point]);
}
for (int i = head[u]; i != -1; i = edges[i].nxt)
if (edges[i].to != fa[0][u])
dfs(edges[i].to);
}
ll query(int x, int y, bool togA, bool togB)
{
if (dep[x] < dep[y])
swap(x, y), swap(togA, togB);
ll x_enable = INF, y_enable = INF;
ll x_disable = INF, y_disable = INF, answer;
ll ans0 = INF, ans1 = INF;
int lca;
if (togA)
x_enable = dp[x][1];
else
x_disable = dp[x][0];
if (togB)
y_enable = dp[y][1];
else
y_disable = dp[y][0];
for (int i = 19; i >= 0; i--)
if (dep[fa[i][x]] >= dep[y])
{
ll xdis = x_disable, xen = x_enable;
x_disable = min(xdis + f[0][0][i][x], xen + f[1][0][i][x]);
x_enable = min(xdis + f[0][1][i][x], xen + f[1][1][i][x]);
x = fa[i][x];
}
if (x == y)
lca = x, togB ? ans1 = x_enable : ans0 = x_disable;
else
{
for (int i = 19; i >= 0; i--)
if (fa[i][x] != fa[i][y])
{
ll xdis = x_disable, xen = x_enable;
ll ydis = y_disable, yen = y_enable;
x_disable = min(xdis + f[0][0][i][x], xen + f[1][0][i][x]);
x_enable = min(xdis + f[0][1][i][x], xen + f[1][1][i][x]);
y_disable = min(ydis + f[0][0][i][y], yen + f[1][0][i][y]);
y_enable = min(ydis + f[0][1][i][y], yen + f[1][1][i][y]);
x = fa[i][x], y = fa[i][y];
}
lca = fa[0][x];
ans0 = dp[lca][0] - dp[x][1] - dp[y][1] + x_enable + y_enable;
ans1 = dp[lca][1] - min(dp[x][1], dp[x][0]) - min(dp[y][0], dp[y][1]) + min(x_enable, x_disable) + min(y_enable, y_disable);
}
if (lca == 1)
answer = min(ans1, ans0);
else
{
for (int i = 19; i >= 0; i--)
if (dep[lca] - (1 << i) > 1)
{
ll tmp0 = ans0, tmp1 = ans1;
ans0 = min(tmp0 + f[0][0][i][lca], tmp1 + f[1][0][i][lca]);
ans1 = min(tmp0 + f[0][1][i][lca], tmp1 + f[1][1][i][lca]);
lca = fa[i][lca];
}
answer = min(dp[1][0] - dp[lca][1] + ans1, dp[1][1] - min(dp[lca][0], dp[lca][1]) + min(ans1, ans0));
}
return answer >= INF ? -1 : answer;
}
int main()
{
memset(head, -1, sizeof(head));
scanf("%d%d%s", &n, &m, typ + 1);
for (int i = 1; i <= n; i++)
scanf("%d", &val[i]);
for (int i = 1, u, v; i <= n - 1; i++)
scanf("%d%d", &u, &v), addpath(u, v), addpath(v, u);
predfs(1), dfs(1);
while (m--)
{
int u, v, x, y;
scanf("%d%d%d%d", &u, &x, &v, &y);
printf("%lld\n", query(u, v, x, y));
}
return 0;
}