主要思路
正好在《组合数学》上看过一个结论:反图形成的连通块的点在原图一定处处连通。证明很简单:考虑点对\((u, v)\),如果点对之间在反图中不连通显然是在原图联通的;如果在反图中连通,有一个不在当前点集的点使得他们连通。所以,我们只需要构建反图,根据「不与本点相连的点都在本连通块内」进行 BFS 即可。
代码
// P3452.cpp #include <bits/stdc++.h> using namespace std; const int MAX_N = 1e5 + 200, MAX_E = 4e6 + 200; int head[MAX_N], current, n, m; struct edge { int to, nxt; } edges[MAX_E]; bool vis[MAX_N], ext[MAX_N]; vector<int> pool; void addpath(int src, int dst) { edges[current].to = dst, edges[current].nxt = head[src]; head[src] = current++; } int bfs(int x) { int tot = 0; queue<int> q; q.push(x), ext[x] = true; while (!q.empty()) { int u = q.front(); q.pop(), tot++; vis[u] = true; for (int i = head[u]; i != -1; i = edges[i].nxt) ext[edges[i].to] = true; vector<int> tmp = pool; pool.clear(); for (int i = 0, siz = tmp.size(); i < siz; i++) if (ext[tmp[i]]) pool.push_back(tmp[i]); else q.push(tmp[i]); for (int i = head[u]; i != -1; i = edges[i].nxt) ext[edges[i].to] = false; } return tot; } int main() { memset(head, -1, sizeof(head)); scanf("%d%d", &n, &m); for (int i = 1, u, v; i <= m; i++) scanf("%d%d", &u, &v), addpath(u, v), addpath(v, u); for (int i = 1; i <= n; i++) pool.push_back(i); vector<int> ans; for (int i = 1; i <= n; i++) if (vis[i] == false) ans.push_back(bfs(i)); sort(ans.begin(), ans.end()); printf("%d\n", ans.size()); for (int i = 0, siz = ans.size(); i < siz; i++) printf("%d ", ans[i]); return 0; }