思路
这道题是一道比较典型的dp求方案数。这是我第一次做dp方案数的题目,这篇题解就作为我dp方案数专题的第一篇文章吧。
首先思考本题的dp方程时,需要用方案数dp的方式去思考。方案数是叠加的,所以每次转移时的运算就是相加而不是取最大最小值。这样的话,我们可以来真正的来思考本题方程。首先方程中需要有点的位置,亦需要小a和uim的状态。我们如何把魔液这个元素考虑进来呢?我们增加一个维度,来记录俩人魔液罐子的差值(当然,为负数的时候我们就可以加一个k进行取模运算,保证在正数范围内可以访问)。所以,dp[i][j][h][0/1]可以表示为走到(i,j)时两人魔罐插值为h时的方案数量,其中0代表小a走,1代表uim走。所以方程如下:
F[i][j][h][0] = (F[i][j][h][0] + F[i – 1][j][(h – map[i][j] + k) % k][1]) % P;
F[i][j][h][0] = (F[i][j][h][0] + F[i][j – 1][(h – map[i][j] + k) % k][1]) % P;
F[i][j][h][1] = (F[i][j][h][1] + F[i – 1][j][(h + map[i][j]) % k][0]) % P;
F[i][j][h][1] = (F[i][j][h][1] + F[i][j – 1][(h + map[i][j]) % k][0]) % P;
代码如下:
// P1373.cpp #include <iostream> using namespace std; // Variables; const int maxn = 802; const int INF = 0x7fffffff; const int P = 1000000007; int n, m, k; int map[maxn][maxn]; int F[maxn][maxn][20][2]; // Start to dp; void dp() { for (int i = 1; i <= n; i++) for (int j = 1; j <= m; j++) for (int h = 0; h <= k; h++) { F[i][j][h][0] = (F[i][j][h][0] + F[i - 1][j][(h - map[i][j] + k) % k][1]) % P; F[i][j][h][0] = (F[i][j][h][0] + F[i][j - 1][(h - map[i][j] + k) % k][1]) % P; F[i][j][h][1] = (F[i][j][h][1] + F[i - 1][j][(h + map[i][j]) % k][0]) % P; F[i][j][h][1] = (F[i][j][h][1] + F[i][j - 1][(h + map[i][j]) % k][0]) % P; } } int main() { // Input; cin >> n >> m >> k, ++k; for (int i = 1; i <= n; i++) for (int j = 1; j <= m; j++) // Initialize; cin >> map[i][j], F[i][j][map[i][j]][0] = 1; dp(); long long ans = 0; // Calculate the answer; for (int i = 1; i <= n; i++) for (int j = 1; j <= m; j++) ans += F[i][j][0][1], ans %= P; // Output; cout << ans; return 0; }